Portable Defibrillators Use Reed Relays in their High Voltage Charging Circuit

REED RELAYS ■ REED SENSORS ■ REED SWITCHES

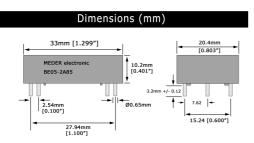


Figure 1. BE Physical Layout

Features

- · Several hundred million operations
- Ability to withstand up to 4000 volts across the contacts
- Ability to Switch up to 1000 Volts
- Ability to hold off 5000 volts between switch to coil
- Contacts dynamically tested

Application

• Ideal for use in portable defibrillators

Introduction

Every year many thousands of peoples' lives are saved having been resuscitated with a defibrillator after their heart had stopped beating. Many times this happens in a hospital environment. However, many people die every day from heart attacks that were not able get to the hospital in time to be resuscitated. Several medical equipment manufacturers have developed portable defibrillators that are placed in airports, bus stations, office buildings, in the home, and several places where people are apt to congregate. These portable defibrillators are battery operated and therefore, the electronics chosen to run the charging circuit must use low average power. The circuit must also be comprised with only very high reliability components. MEDER's high voltage reed relays have been selected to be directly used in the high voltage charging circuit.

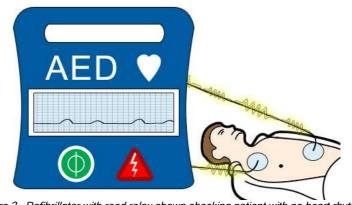


Figure 2. Defibrillator with reed relay shown shocking patient with no heart rhythm.

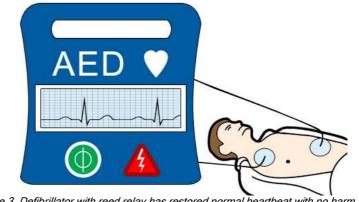


Figure 3. Defibrillator with reed relay has restored normal heartbeat with no harm to the patient.

Reed relays are reliably used in portable battery operated defibrillators

Instruments that directly save lives require the best possible designs, and must use the most reliable components available. Portable defibrillators are designed so that anyone can pick up and use them with no prior experience. Portable defibrillators are only used for emergencies under life and death situations.

Portable Defibrillators Use Reed Relays in their High Voltage Charging Circuit

REED RELAYS ■ REED SENSORS ■ REED SWITCHES

Specifications						
BE Series	Min	Norm	Max	Units		
Operate Specs (@20°C)						
Coil Characteristics*						
Coil Resistance	45	50	55	Ohms		
Coil Voltage		5.0		Volts		
Max Pull-in Voltage			3.3	Volts		
Min. Drop-out	0.65			Volts		
Reed Switch Characteristics						
Contact rating			100	Watts		
Switching voltage	0		1000	Volts		
Switching current	0		1.0	Amps		
Carry current	0		2.5	Amps		
Max Carry Current for 5 Ms			5.0	Amps		
DC Static contact resistance			150	mOhms		
Dynamic contact resistance			200	mOhms		
Dielectric voltage across contacts	4000			Volts		
Operate time (w/ 40% overdrive min)			1.0	msec		
Release time (no coil suppression)			100	μsec		
Operate Temperature	-20		70	°C		
Storage Temperature	-40		85	°C		

*Coil parameters will vary by 0.2% /°C

They are only used when a person has suffered a heart attack; and is usually lying prone with their heart stopped. When the defibrillator is activated, the paddles are placed on the person's chest, and then a high voltage/current pulse is applied across the heart with the intent to shock the heart back into operation. Sometimes, repeated shocks may be required before the heart starts operating again. When repeated shocks are required, a charging circuit in the defibrillator is activated to charge the responsible circuit that will supply the next power burst. This charging circuit needs to be switched in and out in a reliable manner in a guaranteed fault free mode. MEDER's special BE series design was chosen to meet the above requirements.

MEDER's design is a 2 pole normally open relay that has a special spacing between the switches and coil to maintain a long path length, thereby insuring a guaranteed high isolation voltage between the coil and the switches. The design uses no internal solder joints on the reed switches to insure switching reliability. The reed switches are selected to withstand 4000 Volts minimum across the open contacts. The contacts can also switch up to 1000 volts as well.

MEDER's reed relays use hermetically sealed reed switches that are further packaged in strong high strength plastic, and can therefore be subject to various environments without any loss of reliability.

The reed relay is an excellent choice because it can operate reliably over a wide temperature range, and represents an economical way to carry out billions of switching operations.

Through Hole Series							
Series	Dime	Dimensions		Illustration			
		mm	inches				
BE Special series	W	20.4	0.803				
	Н	10.2	0.401	The state of the s			
	L	33.0	1.299	SAM!			

^{**}Consult the factory for more options not listed above.