OmROn

Miniature Power Relays MY/MYK/MYQ.MYH

Best-selling, general-purpose relays that can be selected based on operating environment and application

- In addition to our standard type (MY), an abundant lineup of models including latching relays that retain contact operation status (MYK) and sealed relays suitable for environments where dust and corrosive gases are present (MYQ/MYH) are also available.
- Selection is possible to suit the application, such as models with operation indicators and models with latching levers (MY plug-in terminals).
- Wiring work can be shortened by as much as 60% * compared to conventional screw terminal sockets by combining with push-in plus terminal sockets (PYF- \square-PU) that feature light insertion force and strong pull-out strength to achieve less wiring work.
* When both push-in plus terminals and screw terminal sockets are combined with plug-in terminal types (according to actual OMRON measurements as of November 2015)

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Miniature Power Relay Types

MY/MYK/MYQ•MYH

Model List

Miniature Power Relays: MY

Note: 1. The models in this table are UL/CSA certified. This is indicated with a certification mark on the products. (Except crossbar bifurcated models MY4Z-CBG and MY4Z-CBG)
2. The standard models with plug-in terminals, models with built-in diodes for coil surge absorption, and models with built-in CR circuits for coil surge absorption were used in combination with the PYF■A-E, PYF■-S and PYF-■-PU for the EC Declaration of Conformity. These products display the CE Marking.

Miniature Power Latching Relays (MYK)

Classification	Number of poles	Contacts	Plug-in terminals		PCB terminals
				With operation indicator	$\sqrt{6}$
Standard models	2	Single	MY2K		MY2K-02

Miniature Power Sealed Relays (MYQ/MYH)

Classification	Number of poles	Contacts	Plug-in terminals		PCB terminals
			\square	With operation indicator	
Plastic Sealed Relays	4	Single	MYQ4	MYQ4N	MYQ4-02
		Bifurcated	MYQ4Z		MYQ4Z-02
Hermetically Sealed Relays	4	Single	MY4H		MY4H-0
		Bifurcated	MY4ZH		MY4ZH-0

Refer to Front-connecting Sockets and Back-connecting Sockets in Common Options (Order Separately) on pages 35 and 36 for main unit and socket combinations.

Best-selling, general-purpose relays

- AC/DC coil voltage specifications can now be more easily distinguished thanks to the use of color-coded coil tape and operation indicators (LED).
- Latching levers convenient for circuit checking and MY(S) models equipped with mechanical operation indicators and operation indicators for monitoring operation status are available.
- Contact materials and contact structures can be selected based on contact reliability and corrosion resistance.
*Voltage is printed on white tape in the case of the Standard 3-pole model (MY3).
Refer to Safety Precautions on pages 53 to 54 and Safety
Precautions for All Relays.

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Features

1. More easily distinguished AC/DC coil voltage specifications

- Distinguished using color-coded coil tape*
* Voltage is printed on white tape in the case of the Standard 3-pole model (MY3).

Example: MY2

Coil tape
Pink $=$ AC voltage $\underset{\text { specification }}{\text { AC coil }}$

Example: MY4

Coil tape
Blue = DC voltage

- Distinguished using color-coded operation indicators (LED)

Operation indicator (LED) Red = AC voltage

AC coil specification

Example: MY4

Operation indicator (LED) Green = DC voltage
2. Latching levers convenient for circuit checking and MY(S) models equipped with mechanical operation indicators and operation indicators for monitoring operation status are available.

- Latching lever operating procedure

Sliding the lever to the first stage and pressing the yellow button using an insulated flat-blade screwdriver, etc., will operate the contacts.

Sliding the lever to the second stage will lock the contacts in the operating position.

- Mechanical operation indicator/LED operation indicator

3. Contact materials and contact structures can be selected based on contact reliability and corrosion resistance.

Contact reliability			Corrosion resistance		Typical model
	Contact structure			Contact material	
High \uparrow	Crossbar bifurcated contacts		$\text { High } \uparrow$	Au cladding + AgPd	MY4Z-CBG
	Bifurcated contacts			Au cladding + Ag alloy Au plating +Ag alloy	$\begin{aligned} & \text { MY4Z } \\ & \text { MY2Z } \end{aligned}$
				Au cladding + Ag alloy	MY4
Low			Low	Ag alloy	MY2

Model Number Structure

Model Number Legend

- Plug-in Terminals

M Y

(Example: MY4ZIN(S))
(1)
(2)
(3)
(1) Number of poles

2: 2-pole
3: 3-pole
4: 4-pole

(2) Contacts

None: Single
Z: Bifurcated
Z-CBG: Crossbar bifurcated

(3) Options

None: None
N : With operation indicator
IN(S): With operation indicator/latching lever

Models with builtin diode for coil surge absorption

(Example: MY4ZIN-D2(S))
(1) (2)
(2) Options
-D: Models with built-in diode for coil surge absorption
N-D2: Built-in diode for coil surge absorption, with operation indicator IN-D2(S): Built-in diode for coil surge absorption, with operation indicator/latching lever

2: 2-pole, single contacts
2Z: 2-pole, bifurcated contacts
3: 3-pole, single contacts
4: 4-pole, single contacts
4Z: 4-pole, bifurcated contacts

Models with builtin CR circuit for coil surge absorption

\square (Example: MY4ZIN-CR(S))
(1)
(2)
(1) Number of poles/contacts

2: 2-pole, single contacts
2Z: 2-pole, bifurcated contacts
4: 4-pole, single contacts
4Z: 4-pole, bifurcated contacts

(2) Options

-CR: Models with built-in CR circuit for coil surge absorption
N -CR: Built-in CR circuit for coil surge absorption, with operation indicator
IN-CR(S): Built-in CR circuit for coil surge absorption, with operation indicator/latching lever* *4-pole: Single/bifurcated contacts only

- PCB terminals/case surface mounted

\square (Example: MY2-02)
(1)
(2)
(2) Terminals
-02: PCB terminals
F: Case-surface mounting

Ordering Information

-Plug-in Terminals

Without operation indicator

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	Single	MY2	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY2Z	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	3	Single	MY3	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	4	Single	MY4	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY4Z	100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Crossbar bifurcated	MY4Z-CBG	100/110, 110/120, 200/220 VAC
				12, 24, 48, 100/110 VDC
Models with built-in diode for coil surge absorption (DC coil specification only)	2	Single	MY2-D	12, 24, 48, 100/110 VDC
		Bifurcated	MY2Z-D	12, 24, 100/110 VDC
	3	Single	MY3-D	12, 24, 100/110 VDC
	4	Single	MY4-D	12, 24, 48, 100/110 VDC
		Bifurcated	MY4Z-D	12, 24, 48, 100/110 VDC
Models with built-in CR circuit for coil surge absorption (AC coil specification only)	2	Single	MY2-CR	100/110, 110/120, 200/220, 220/240 VAC
		Bifurcated	MY2Z-CR	100/110, 200/220 VAC,
	4	Single	MY4-CR	100/110, 110/120, 200/220, 220/240 VAC
		Bifurcated	MY4Z-CR	100/110, 110/120, 200/220, 220/240 VAC

With operation indicator

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	Single	MY2N	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY2ZN	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	3	Single	MY3N	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	4	Single	MY4N	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY4ZN	24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Crossbar bifurcated	MY4ZN-CBG	100/110, 200/220 VAC
				24 VDC
Models with built-in diode for coil surge absorption (DC coil specification only)	2	Single	MY2N-D2	12, 24, 48, 100/110 VDC
		Bifurcated	MY2ZN-D2	12, 24, 100/110 VDC
	3	Single	MY3N-D2	12, 24, 100/110 VDC
	4	Single	MY4N-D2	12, 24, 48, 100/110 VDC
		Bifurcated	MY4ZN-D2	12, 24, 48, 100/110 VDC
Models with built-in CR circuit for coil surge absorption (AC coil specification only)	2	Single	MY2N-CR	100/110, 110/120, 200/220, 220/240 VAC
	4	Single	MY4N-CR	100/110, 110/120, 200/220, 220/240 VAC
		Bifurcated	MY4ZN-CR	100/110, 110/120, 200/220, 220/240 VAC

With operation indicator/latching lever

| C\|c|c|c|l |
| :--- |
| Classification |
| |
| | |

-PCB terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	Single	MY2-02	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	3	Single	MY3-02	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	4	Single	MY4-02	12, 24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY4Z-02	100/110, 110/120, 200/220 VAC
				12, 24, 48, 100/110 VDC

-Case-surface mounting

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	Single	MY2F	24, 100/110, 110/120, 200/220, 220/240 VAC
				12, 24, 48, 100/110 VDC
	3	Single	MY3F	24, 100/110, 200/220 VAC
				24, 100/110 VDC
	4	Single	MY4F	24, 100/110, 110/120, 200/220 VAC
				12, 24, 48, 100/110 VDC
		Bifurcated	MY4ZF	200/220 VAC
				12, 24 VDC

Ratings and Specifications

Ratings

Operating Coils

Terminal Type	Classification	Number of poles	Contacts	Without operation indicator	With operation indicator
Plug-in terminals	Standard models	2	Single	MY2	MY2N
		4	Single	MY4	MY4N
			Bifurcated	MY4Z	MY4ZN
	Models with built-in diode for coil surge absorption (DC coil specification only)	2	Single	MY2-D	MY2N-D2
		4	Single	MY4-D	MY4N-D2
			Bifurcated	MY4Z-D	MY4ZN-D2
	Models with built-in CR circuit for coil surge absorption (AC coil specification only)	2	Single	MY2-CR	MY2N-CR
		4	Single	MY4-CR	MY4N-CR
			Bifurcated	MY4Z-CR	MY4ZN-CR

(Item		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must operate voltage (V)	$\begin{gathered} \text { Must } \\ \text { release } \\ \text { voltage (V) } \\ \hline \end{gathered}$	Maximum voltage (V)	Powerconsumption(VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
	12	106.5	91	46	0.17	0.33	80\% max.*1	30\% min. ${ }^{*} 2$	110% of rated voltage	
	24	53.8	46	180	0.69	1.3				
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				Approx. 0.9
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				$\text { (at } 60 \mathrm{~Hz} \text {) }$
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
	12			165	0.73	1.37				
	24			662	3.2	5.72				
DC	48			2,725	10.6	21.0		10\% min.*2		pprox. 0.9
	100/110			11,440	45.6	86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% maximum.
To ensure operation, apply at least 80% of the rated value (at a coil temperature of $23^{\circ} \mathrm{C}$).
*2. There is variation between products, but actual values are 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Terminal Type		Classification			Number of poles	Contacts		Without operation indicator			With operation indicator		
Plug-in terminals		Standard models			2	Bifurcated		MY2Z			MY2ZN		
		Models with built-in diode for coil surge absorption (DC coil specification only)			2	Bifurcated		MY2Z-D			MY2ZN-D2		
ItemRated voltage (V)		Rated current (mA)		Coil resistance (Ω)			Coil inductance (H)			Must operate voltage (V)	Must release voltage (V)	Maximum voltage (V)	Powerconsumption(VA, W)
		50 Hz	60 Hz				Armature OFF		Armature ON				
AC	12	106.5	91	46			0.17		0.33	80\% max. ${ }^{*} 1$	30\% min.*2	110% of rated voltage	$\begin{gathered} \text { Approx. } 0.9 \\ \text { to } 1.3 \\ \text { (at } 60 \mathrm{~Hz} \text {) } \end{gathered}$
	24	53.8	46		180		0.69		1.3				
	100/110	11.7/12.9	10/11		3,750		14.54		24.6				
	110/120	9.9/10.8	8.4/9.2		4,430		19.2		32.1				
	200/220	6.2/6.8	5.3/5.8		12,950		54.75		94.07				
	220/240	4.8/5.3	4.2/4.6		18,790		83.5		136.4				
DC	12	75			160		0.73		1.37		10\% min.*2		Approx. 0.9
	24	36.9			650		3.2		5.72				
	48	18.5			2,600		10.6		21.0				
	100/110	9.1/10			11,000		45.6		86.2				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for AC rated current and $\pm 15 \%$ for DC coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% maximum.
To ensure operation, apply at least 80% of the rated value.
${ }^{*} 2$. There is variation between products, but actual values are 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Terminal Type	Classification	Number of poles	Contacts	With latching lever
Plug-in terminals	Standard models	2	Single	MY2IN(S)
		4	Single	MY4IN(S)
			Bifurcated	MY4ZIN(S)
	Models with built-in diode for coil surge absorption (DC coil specification only)	2	Single	MY2IN-D2(S)
		4	Single	MY4IN-D2(S)
			Bifurcated	MY4ZIN-D2(S)
	Models with built-in CR circuit for coil surge absorption (AC coil specification only)	2	Single	MY4IN-CR(S)
		4	Bifurcated	MY4ZIN-CR(S)

Item Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must operate voltage (V)	Mustreleasevoltage (V)	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	100/110	11.7/12.9	10/11	3,750	14.54	24.6	80\% max.*1	30\% min.*2	110% of rated voltage	$\begin{gathered} \text { Approx. } 0.9 \\ \text { to } 1.3 \\ \text { (at } 60 \mathrm{~Hz} \text {) } \\ \hline \end{gathered}$
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	94.07				
DC	12	75		160	0.73	1.37		10\% min.*2		
	24	37.7		636	3.2	5.72				Approx. 0.9
	48	18.8		2,560	10.6	21				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for $D C$ coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz)
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% maximum.
To ensure operation, apply at least 80% of the rated value.
*2. There is variation between products, but actual values are 10% minimum for $D C$. To ensure release, use a value that is lower than the specified value.

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for $D C$ coil resistance.
2. The AC coil resistance and inductance values are reference values only (at 60 Hz).
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% maximum.
To ensure operation, apply at least 80% of the rated value.
*2. There is variation between products, but actual values are 30% minimum for $A C$ and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

Contact Ratings

Number of poles (contact configuration) Contact structure	2-pole (DPDT)						3-pole (3PDT) Single	
	Single		With latching lever (S)		Bifurcated			
	Resistive load	Inductive load ($\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)	Resistive load	Inductive load $(\cos \varphi=0.4$, L/R = 7 ms)	Resistive load	Inductive load ($\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)	Resistive load	Inductive load ($\cos \varphi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	$\begin{aligned} & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	5 A at 220 VAC 5 A at 24 VDC	$\begin{aligned} & 2 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 2 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$
Rated carry current*1	$5 \mathrm{~A}\left(10 \mathrm{~A}^{*} 2\right)$				5 A		5 A	
Maximum switching voltage	250 VAC, 125 VDC						250 VAC, 125 VDC	
Maximum switching current	5 A		10 A		5 A		5 A	
Maximum switching power	$\begin{aligned} & \hline 1,100 \mathrm{VA} \\ & 120 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \mathrm{VA} \\ & 48 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2,500 \mathrm{VA} \\ & 300 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \mathrm{VA} \\ & 60 \mathrm{~W} \end{aligned}$	$\begin{array}{\|l\|} \hline 1,100 \mathrm{VA} \\ 120 \mathrm{~W} \\ \hline \end{array}$	$\begin{aligned} & 440 \mathrm{VA} \\ & 48 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 120 \mathrm{~W} \\ & \hline \end{aligned}$	$\begin{aligned} & 440 \mathrm{VA} \\ & 48 \mathrm{~W} \end{aligned}$
Contact material	Ag				Au plating + Ag		Ag	

Number of poles (contact configuration) Contact structure Load	4-pole (4PDT)									
	Single		With latching lever (S)		Bifurcated		With latching lever (S)		Crossbar bifurcated (CBG)	
	Resistive load	Inductive load ($\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)	Resistive load	Inductive load $(\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)	$\begin{aligned} & \text { Resistive } \\ & \text { load } \end{aligned}$	Inductive load $(\cos \varphi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load	Inductive load $(\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)	$\begin{gathered} \text { Resistive } \\ \text { load } \end{gathered}$	Inductive load $(\cos \varphi=0.4$, L/R $=7 \mathrm{~ms}$)
Rated load	$\begin{aligned} & 3 \text { A at } 220 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 3 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.8 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	3 A at 220 VAC 3 A at 24 VDC	0.8 A at 220 VAC 1.5 A at 24 VDC	3 A at 250 VAC 3 A at 30 VDC	$\begin{aligned} & 0.8 \mathrm{~A} \text { at } 250 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } 30 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 1 \text { A at } 220 \text { VAC } \\ & 1 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 0.3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ & 0.5 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{aligned}$
Rated carry current*1	3 A (5 ${ }^{*} 2$)				3 A (5 A 2)				1 A	
Maximum switching voltage	250 VAC, 125 VDC									
Maximum switching current	3 A								1 A	
Maximum switching power	$\begin{aligned} & 660 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 176 \mathrm{VA} \\ & 36 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 1,250 VA } \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 200 \mathrm{VA} \\ & 45 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 660 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 176 \mathrm{VA} \\ & 36 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { 1,250 VA } \\ & 150 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 200 \mathrm{VA} \\ & 45 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 220 \mathrm{VA} \\ & 24 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 66 \mathrm{VA} \\ & 12 \mathrm{~W} \end{aligned}$
Contact material	Au cladding + Ag alloy								Au cladding + AgPd	

*1. If you use a Socket, do not exceed the rated carry current of the Socket.
*2. Values shown in parentheses are for the $\mathrm{MY} \square(\mathrm{S})$ model with latching lever.

Characteristics

Number of poles (contact configuration)		2-pole (DPDT)		3-pole (3PDT)	4-pole (4PDT)		
	Contact structure	Single	Bifurcated	Single	Single	Bifurcated	Crossbar bifurcated (CBG)
Contact resistance*1 *2		$50 \mathrm{~m} \Omega$ max.					$100 \mathrm{~m} \Omega$ max.
Operate time*3		20 ms max.					
Release time*3		20 ms max .					
Maximum switching frequency	Mechanical	18,000 operations/h					
	Rated load	1,800 operations/h					
Insulation resistance*4		$100 \mathrm{M} \Omega \mathrm{min}$.					
Dielectric strength	Between coil and contacts Between contacts of different polarity	2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min					
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min					700 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)					
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$					
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$					
Endurance	Mechanical	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)	AC: 50,000,000 operations min. DC: 50,000,000 operations min. (switching frequency: 18,000 operations/h)	AC: $50,000,000$ operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)	AC: 50,000,000 operations min. DC: 100,000,000 operations min. (switching frequency: 18,000 operations/h)	AC: 20,000,000 operations min. DC: 20,000,000 operations min. (switching frequency: 18,000 operations/h)	AC: 50,000,000 operations min. DC: 50,000,000 operations min. (switching frequency: 18,000 operations/h)
	Electrical*5	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)	500,000 operations min. (rated load, switching frequency: 1,800 operations/h)	200,000 operations min. (rated load, switching frequency: 1,800 operations/h)	100,000 operations min. (rated load, switching frequency: 1,800 operations/h)	50,000 operations min. (rated load, switching frequency: 1,800 operations/h)
Failure rate P value (reference value)*6		1 mA at 5 VDC	$100 \mu \mathrm{~A}$ at 1 VDC	1 mA at 5 VDC	1 mA at 1 VDC	$100 \mu \mathrm{~A}$ at 1 VDC	$100 \mu \mathrm{~A}$ at 1 VDC
Weight		Approx. 35 g					

Note: The data shown above are initial values.
*1. Models with latching lever are $100 \mathrm{~m} \Omega$ maximum
*2. Measurement conditions: 1 A at 5 VDC using the voltage drop method.
*3. Measurement conditions: With rated operating power applied, not including contact bounce.
*4. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement.
*5. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*6. This value was measured at a switching frequency of 120 operations per minute.

Classification	Standard models					Models with built-in diode for coil surge absorption (-D)/ Models with built-in CR circuit for coil surge absorption (-CR)		
Contacts	Single/bifurcated			Crossbar/bifurcated (CBG)		Single/bifurcated		
	Without	With operation	ndicator		With operation	Without	With operation	ndicator
Features	operation indicator		With latching lever	operation indicator		operation indicator		With latching lever
Ambient operating temperature*1	-55 to $70^{\circ} \mathrm{C}$	-55 to $60^{\circ}{ }^{*}$ *	-55 to $70^{\circ} \mathrm{C}$	-25 to $70^{\circ} \mathrm{C}$	-25 to $60^{\circ} \mathrm{C}$	-55 to $60^{\circ} \mathrm{C}^{*} 2$	-55 to $60^{\circ} \mathrm{C}^{*} 2$	-55 to $70^{\circ} \mathrm{C}$
Ambient operating humidity	5\% to 85\%					5\% to 85\%		

*1. With no icing or condensation.
*2. This limitation is due to the diode junction temperature and elements used.

Certified Standards

OUL certification (File No. E41515)

Model	Standard number	Category	Listed/ Recognized	Operating Coil ratings	No. of poles	Contact ratings	Certified number of operations
MY2 MY2N MY2IN(S) MY2N-D2 MY2-D2 MY2IN-D2(S) MY2-CR MY2N-CR	UL508	NRNT2	Recognition	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	2	$10 \mathrm{~A}, 250$ VAC (General Use) $10 \mathrm{~A}, 30$ VDC (General Use) 7 A, 240 VAC (General Use) 7 A, 24 VDC (Resistive) 5 A, 240 VAC (General Use) 5 A, 250 VAC (Resistive) 5 A, 30 VDC (Resistive) 3 A, 265 VAC (Resistive)	6,000
						$\begin{aligned} & \text { 1/6 HP, } 250 \text { VAC } \\ & \text { 1/8 HP, } 265 \text { VAC } \\ & 1 / 10 \mathrm{HP}, 120 \text { VAC } \end{aligned}$	1,000
						B300 Pilot Duty (Same polarity)	6,000
MY2Z MY2ZN MY2-02 MY2F MY2Z-D MY2Z-D2	UL508	NRNT2	Recognition	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	2	7 A, 240 VAC (General Use) 7 A, 24 VDC (Resistive) 5 A, 240 VAC (General Use) 5 A, 250 VAC (Resistive) 5 A, 30 VDC (Resistive) 3 A, 265 VAC (Resistive)	6,000
$\begin{aligned} & \text { MY2Z-CR } \\ & \text { MY2ZN-CR } \end{aligned}$						1/6 HP, 250 VAC 1/8 HP, 265 VAC 1/10 HP, 120 VAC	1,000
						B300 Pilot Duty (Same polarity)	6,000
MY3 MY3N MY3-D MY3N-D2 MY3-02 MY3F	UL508	NRNT2	Recognition	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	3	5 A, 28 VDC (Resistive) 5 A, 240 VAC (General Use) 1/6 HP, 250 VAC	6,000 1,000
MY4 MY4N MY4IN(S) MY4-D MY4N-D2 MY4IN-D2(S) MY4Z MY4ZN MY4ZIN(S) MY4Z-D MY4ZN-D2 MY4ZIN-D2(S) MY4Z-CR MY4ZN-CR MY4ZIN-CR(S) MY4-02 MY4F MY4Z-02 MY4ZF	UL508	NRNT2	Recognition	$\begin{aligned} & 6 \text { to } 240 \mathrm{VAC} \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	4	5 A, 28 VDC (General Use) (Same polarity) 5 A, 240 VAC (General Use) (Same polarity) 5 A, 30 VDC (Resistive) (Same polarity) 5 A, 250 VAC (Resistive) (Same polarity) 0.2 A, 120 VDC (Resistive) (Same polarity)	6,000 1,000 6,000

OCSA certification (File No. LR31928)

Model	Standard number	Class number	Operating Coil ratings	No. of poles	Contact ratings	Certified number of operations
MY2 MY2N MY2IN(S) MY2N-D2 MY2-D2 MY2IN-D2(S)	C22.2 NO.0, No. 14		$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	2	7 A, 240 VAC (Resistive) 7 A, 24 VDC (Resistive) 5 A, 240 VAC (General Use) 5 A, 250 VAC (Resistive) 5 A, 30 VDC (Resistive)	6,000
MY2-CR MY2N-CR					1/6 HP, 250 VAC (Same polarity) 1/10 HP, 120 VAC (Same polarity)	1,000
MY2Z MY2ZN MY2-02 MY2F MY2Z-D MY2Z-D2 MY2Z-CR MY2ZN-CR	C22.2 NO.0, No. 14		6 to 240 VAC 6 to 125 VDC	2	7 A, 240 VAC (General Use) (Same polarity) 7 A, 24 VDC (Resistive) (Same polarity) 5 A, 240 VAC (General Use) (Same polarity) 5 A, 30 VDC (Resistive) 5 A, 250 VAC (Resistive) (Same polarity) 0.2 A, 120 VDC (Resistive)	6,000
					1/6 HP, 250 VAC 1/10 HP, 120 VAC	1,000
MY3 MY3N MY3-D MY3N-D2 MY3-02 MY3F	C22.2 NO.0, No. 14		$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	3	5 A, 28 VDC (Resistive) 5 A, 240 VAC (General Use) 7 A, 240 VAC (General Use) 7 A, 24 VDC (Resistive)	6,000
					1/6 HP, 250 VAC	1,000
MY4 MY4N MY4N(S) MY4-D MY4N-D2 MY4IN-D2(S) MY4-CR MY4N-CR MY4IN-CR(S) MY4Z MY4ZN MY4ZIN(S) MY4Z-D MY4ZN-D2 MY4ZIN-D2(S) MY4Z-C MY4ZN-CR MY4ZIN-CR(S)	C22.2 No. 14	321107	6 to 240 VAC 6 to 125 VDC	4	5 A, 240 VAC (General Use) (Same polarity) 5 A, 28 VDC (General Use) (Same polarity) 5 A, 250 VAC (Resistive) (Same polarity) 5 A, 30 VDC (Resistive) (Same polarity) 0.2 A, 120 VDC (Resistive) (Same polarity)	6,000
					1/6 HP, 250 VAC (Same polarity) 1/10 HP, 120 VAC (Same polarity)	1,000
					B300 Pilot Duty (Same polarity)	6,000
$\begin{aligned} & \text { MY4-02 } \\ & \text { MY4F } \\ & \text { MY4Z-02 } \\ & \text { MY4ZF } \end{aligned}$	C22.2 NO.0, No. 14	321107	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	4	7 A, 240 VAC (General Use) (Same polarity) 7 A, 24 VDC (Resistive) (Same polarity) 5 A, 240 VAC (General Use) (Same polarity) 5 A, 30 VDC (Resistive) 5 A, 250 VAC (Resistive) (Same polarity) 0.2 A, 120 VDC (Resistive)	6,000
					$\begin{aligned} & \text { 1/6 HP, } 250 \text { VAC } \\ & 1 / 10 \mathrm{HP}, 120 \mathrm{VAC} \end{aligned}$	1,000

-TÜV Rheinland certification (Certification No. R50030059)

Model	Operating Coil ratings	Contact ratings	Certified number of operations
MY2Z	$\begin{aligned} & 6 \text { to } 125 \text { VDC, } \\ & 6 \text { to } 240 \text { VAC } \end{aligned}$	$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1.0)$	100,000
MY2ZN			
MY2-02 MY2F			
MY2Z-D			
MY2Z-D2			
MY2Z-CR			
MY2ZN-CR			
MY3		$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1.0)$	
MY3N		$0.8 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=0.4)$	
MY3-D			
MY3N-D2			
MY3-02			
MY3F			
MY4-02		$3 \mathrm{~A}, 120 \mathrm{VAC}(\cos \varphi=1.0)$	
MY4F		$0.8 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=0.4)$	
MY4Z-02			
MY4ZF			

-CE Marking

OLR certification (Lloyd's Register)

Model	File No.	Environmental Category	Operating Coil ratings	Contact ratings	Certified number of operations
MY2 MY2N MY2IN(S) MY2-D MY2N-D2 MY2IN-D2(S) MY2-CR MY2N-CR	File No.98/10014	ENV2,3	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 125 \text { VDC } \end{aligned}$	10 A, 250 VAC (Resistive) 2 A, 250 VAC (PF0.4) 10 A, 30 VDC (Resistive) $2 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	MY2: 50,000
MY2Z MY2ZN MY2Z-D MY2ZN-D2	File No.90/10270	ENV2,3	6 to 240 VAC 6 to 125 VDC	2 A, 30 VDC inductive load 2 A, 200 VAC inductive load	MY2: 50,000
MY4 MY4N MY4IN(S) MY4-D MY4N-D2 MY4IN-D2(S) MY4-CR MY4N-CR MY4IN-CR(S) MY4Z MY4ZN MY4ZIN(S) MY4Z-D MY4ZN-D2 MY4ZIN-D2(S) MY4Z-CR MY4ZN-CR MY4ZIN-CR(S)	File No.98/10014	ENV2,3	6 to 240 VAC 6 to 125 VDC	5 A, 250 VAC (Resistive) $0.8 \mathrm{~A}, 250$ VAC (PF0.4) 5 A, 30 VDC (Resistive) $1.5 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=7 \mathrm{~ms})$	$\begin{aligned} & \text { MY4: } \\ & 50.000 \end{aligned}$

-VDE certification

Model	Standard number	Certification No.	Operating Coil ratings	Contact ratings	Certified number of operations
MY2 MY2N MY2IN(S) MY2-D MY2N-D2 MY2IN-D2(S) MY2-CR MY2N-CR	EN 61810-1	112467UG	6, 12, 24, $48 / 50$, $100 / 110$, $110 / 120$, $200 / 220$, $220 / 240$ VAC $6,12,24$, $48,100 / 110$, 125 VDC	$\begin{aligned} & 10 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1) \\ & 10 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}) \end{aligned}$	MY2: 100,000 MY4: 100,000 MY4Z: 50,000 (AC)
MY4 MY4N MY4IN(S) MY4Z MY4ZN MY4ZIN(S) MY4-D MY4ZN-D2 MY4IN-D2(S) MY4Z-D MY4Z-D2 MY4ZIN-D2(S) MY4-CR MY4N-CR MY4IN-CR(S) MY4Z-CR MY4ZN-CR MY4ZIN-CR(S)			$\begin{aligned} & \hline 6,12,24, \\ & 48 / 50, \\ & 100 / 110, \\ & 110 / 120, \\ & 200 / 220, \\ & 220 / 240 \text { VAC } \\ & 6,12,24, \\ & 48,100 / 110, \\ & 125 \text { VDC } \end{aligned}$	$5 \mathrm{~A}, 250 \mathrm{VAC}(\cos \varphi=1)$ $5 \mathrm{~A}, 30 \mathrm{VDC}(\mathrm{L} / \mathrm{R}=0 \mathrm{~ms})$	

Engineering Data (Reference Value)

- Maximum Switching Capacity

Plug-in terminals
MY2 and MY3

Plug-in Terminals, with latching lever
MY2(S)

MY4 and MY4Z

MY4(S) and MY4Z(S)

MY4Z-CBG

- Endurance Curve

Plug-in terminals

MY2 and MY3

MY4Z

MY4

MY4Z

Plug-in Terminals, with latching lever

MY2(S)

MY4(S)

MY2(S)

MY4Z(S)

MY4(S)

MY4Z(S)

-Ambient Temperature vs. Coil Temperature Rise

MY2 AC Models, 50 Hz

Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$
MY4 AC Models, 50 Hz

MY2 DC Models

MY4 DC Models

Models with built-in diode for coil surge absorption MY \square-D

With Diode

Without Diode

Note: 1. Make sure that the polarity is correct.
2. The release time will increase, but the $20-\mathrm{ms}$ specification for standard models is satisfied.
3. Diode properties: The diode has a reversed dielectric strength of $1,000 \mathrm{~V}$.

Forward current: 1 A

Models with built-in CR circuit for coil surge absorption MY \square-CR

With CR

Without CR

Number of operations ($\times 10^{4}$ operations)
Common Specifications for MY2, MY3, MY4, MY4Z, MY $\square-02$, MY $\square F$, and MY(S) -Shock Malfunction

$$
N=20
$$

Measurement: Shock was applied 3 times each in 6 directions along 3 axes with the Relay energized and not energized to check the shock values that cause the Relay to malfunction.
Criteria: Non-energized: $200 \mathrm{~m} / \mathrm{s}^{2}$, Energized: $200 \mathrm{~m} / \mathrm{s}^{2}$
Shock direction

-Plug-in terminals

MY2, MY2N, MY2-D and MY2N-D2

MY2-CR, MY2N-CR
Terminal Arrangement/ Internal Connection Diagram
(Bottom View)
MY2
(AC/DC Models)

DC Models

(Coil has polarity)

MY2N

$$
\text { AC Models } \quad \text { (DC Models Only) }
$$

(Coil has no polarity)

MY2-D

(Coil has polarity)

MY2N-D2
(DC Models Only)

(Coil has polarity)

MY2-CR
(AC Models Only)

(Coil has no polarity)

MY2N-CR (AC Models Only)

(Coil has no polarity)

Note: 1. An AC model has coil disconnection self-diagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly.
3. The indicator is red for $A C$ and green for $D C$.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY2Z, MY2ZN, MY2Z-D and MY2ZN-D2
MY2Z-CR, MY2ZN-CR

Note: 1. An AC model has coil disconnection self-diagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly.
3. The indicator is red for $A C$ and green for $D C$.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY3, MY3N, MY3-D, and MY3N-D2
Terminal Arrangement/ Internal Connection Diagram
(Bottom View)
MY3
(Coil has polarity) (Coil has no polarity) (Coil has polarity) (Coil has polarity)
Note: 1. An AC model has coil disconnection self-diagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly.
3. The indicator is red for AC and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY4, MY4N, MY4-D and MY4N-D2
MY4-CR, MY4N-CR

DC Models MY4N \quad AC Models

(Coil has polarity)

(Coil has no polarity)

(Coil has polarity)

(Coil has polarity)

(Coil has no polarity)

MY4N-CR (AC Models Only)

(Coil has no polarity)
Note: 1. An AC model has coil disconnection self-diagnosis
2. For the DC models, check the coil polarity when wiring and wire all connections correctly.
3. The indicator is red for $A C$ and green for DC.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY4Z, MY4ZN, MY4Z-D, MY4ZN-D2 MY4Z-CR, MY4ZN-CR

Terminal Arrangement/Internal
Connection Diagram (Bottom View) MY4Z (AC/DC Models)

MY4Z-CR
(AC Models Only)

(Coil has no polarity)

MY4ZN-CR (AC Models Only)

(Coil has no polarity)

Note: 1. An AC model has coil disconnection self-diagnosis.
2. For the DC models, check the coil polarity when wiring and wire all connections correctly
3. The indicator is red for $A C$ and green for $D C$.
4. The operation indicator indicates the energization of the coil and does not represent contact operation.

MY2IN(S) MY2IN-D2(S)

Terminal Arrangement/Internal Connections (Bottom View)

Note: For the DC models, check the coil polarity when wiring and wire all connections correctly.

MY(Z)IN(S)
MY4(Z)IN-D2(S)
MY4(Z)IN-CR(S)

MY4Z-CBG

Terminal Arrangement/Internal
Connection Diagram
(Bottom View) MY4Z-CBG (AC/DC Models)

-PCB terminals

The figure and outline drawing show MY4-02. The 2-pole and 3-pole models conform to these dimensions.

* Dimensions in parentheses are for the MY4-02.

PCB Processing Dimensions (Bottom View)

Note: 1. The dimensional tolerance is ± 0.1.
2. Refer to the terminal arrangement and internal connections diagrams for the MY2, MY3, MY4, and MY4Z.

Case-surface mounting MY2F
MY3F
MY4F
MY4ZF

The above figure is for the MY4F. The 2-pole and 3-pole models conform to these dimensions.

$\begin{aligned} & \text { Note: } \text { Refer to the terminal arrangement } \\ & \text { and internal connections diagrams }\end{aligned}$ for the MY2, MY3, MY4, and MY4Z

Miniature Power Latching Relays MYK

Latching miniature power relays that retain contact operation status

- A low power consumption type that retains contacts using a magnetic lock system.
- Equipped with mechanical operation indicators to make operation status easy-to-see.

Refer to Safety Precautions on pages 53 to 54 and Safety Precautions for All Relays.

Features

Latching Relays MYK

Retains contact operation status.

NO contact turns on when voltage is applied to the set coil and stays on even if voltage stops being applied to the set coil. NO contact turns off when voltage is applied to the reset coil, after which NC contact will turn on.*
*MYK features a magnetic lock system.

Contact operation status can be seen at a glance thanks to the mechanical operation indicator.

Model Number Structure

Model Number Legend

(1)

(2)

(3)

(4)
(1) Basic model name MY: Miniature Power Relays
(2) Number of poles/contacts

2: 2-pole, single
(4) Options, terminal type

None: Plug-in terminals
02: PCB terminals

Ordering Information When your orete, spectry the rated volage.

Main unit

-Plug-in terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	2	Single	MY2K	$12,24,100,100 / 110$ VAC

-PCB terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical	2	Single	MY2K-02	24,100 VAC
Appliances and Material Safety Act)	2			

MYK

Ratings and Specifications

Ratings

-Operating coil (AC)

Rated voltage (V)		Set coil			Reset coil			Must operate voltage (V)	Must release voltage (V)	Maximum voltage (V)	Power consumption (VA, W)	
		Rated current (mA)		Coil resistance (Ω)	Rated current (mA)		Coil resistance (Ω)				Set coil	Reset coil
		50 Hz	60 Hz		50 Hz	60 Hz						
AC	12	57	56	72	39	38.2	130	80\% max.*	80\% max.	$\begin{gathered} 110 \% \text { max. } \\ \text { of rated } \\ \text { voltage } \end{gathered}$	$\begin{gathered} \text { Approx. } 0.6 \\ \text { to } 0.9 \\ \text { (at } 60 \mathrm{~Hz} \text {) } \end{gathered}$	$\begin{aligned} & \text { Approx. } 0.2 \\ & \text { to } 0.5 \\ & \text { (at } 60 \mathrm{~Hz} \text {) } \end{aligned}$
	24	27.4	26.4	320	18.6	18.1	550					
	100	7.1	6.9	5,400	3.5	3.4	3,000					
DC	12	110		110	50		235				Approx. 1.3	Approx. 0.6
	24	52		470	25		940					
	48	27		1,800	16		3,000					

Note: 1. The rated current for $A C$ is the value measured with a DC ammeter in half-wave rectification.
2. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for $D C$ coil resistance.
3. The AC coil resistance is a reference value only.
4. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
5. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$
*There is variation between products, but actual values are 80% maximum.

-Contact Ratings

Number of poles (contact configuration)	2-pole (DPDT)	
Contact structure		gle
Load	Resistive load	Inductive load ($\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	$\begin{array}{\|l} \hline 3 \mathrm{~A} \text { at } 220 \mathrm{VAC} \\ 3 \mathrm{~A} \text { at } 24 \mathrm{VDC} \end{array}$	0.8 A at 220 VAC 1.5 A at 24 VDC
Rated carry current	3 A	
Maximum switching voltage	250 VAC, 125 VDC	
Maximum switching current	3 A	
Maximum switching power	$\begin{aligned} & 660 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 176 \text { VA } \\ & 36 \text { W } \end{aligned}$
Contact material	Au plating + Ag	

Characteristics

Contact resistance*1		50
Set	Operate time*2	AC
	Minimum pulse width	AC
Reset	Release time*2	AC
	Minimum pulse width	AC
Maximum switching frequency	Mechanical	18
	Rated load	1,8
Insulation resistance*3		10
Dielectric strength	Between coil and contacts Between contacts of different polarity	1
	Between contacts of the same polarity	1.
	Between set/reset coils	
Vibration resistance	Destruction	10
	Malfunction	10
Shock resistance	Destruction	1,000
	Malfunction	20
Endurance	Mechanical	100
	Electrical*4	200
Failure rate P value (reference value)*5		1
Ambient operating temperature*6		-5
Ambient operating humidity		5\%
Weight		Ap

$50 \mathrm{~m} \Omega$ max.
AC: 30 ms max., DC: 15 ms max.
AC: 60 ms, DC: 30 ms
AC: 60 ms max., DC: 15 ms max.
18,000 operations $/ \mathrm{h}$
1,800 operations $/ \mathrm{h}$
$100 \mathrm{M} \Omega$ min.
$1,500 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min
$1,000 \mathrm{VAC}$ at $50 / 60 \mathrm{~Hz}$ for 1 min
10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)
10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)
$1,000 \mathrm{~m} / \mathrm{s}^{2}$
$200 \mathrm{~m} / \mathrm{s}^{2}$
$100,000,000$ operations min. (switching frequency: 18,000 operations/h)
200,000 operations min. (at rated load, switching frequency: 1,800 operations $/ \mathrm{h})$
1 mA at 1 VDC
-55 to $60^{\circ} \mathrm{C}$
5% to 85%
Approx. 30 g

Note: The data shown above are initial values.
*1. Measurement conditions: 1 A at 5 VDC using the voltage drop method.
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute
*6. With no icing or condensation.

Engineering Data (Reference Value)

Maximum Switching Capacity MY2K(-02)

Magnetic Interference (External Magnetic Field) MY2K 24 VDC

Shock Malfunction

MY2K 100 VAC

Endurance Curve

MYK(-02)

Latching Deterioration Over Time

 MY2K

MYK(-02)

MYK

-Plug-in terminals

MY2K
Terminal Arrangement/ Internal Connection Diagram (Bottom View)

-PCB terminals

PCB Processing Dimensions

MY2K-02

Note: The dimensional
tolerance is ± 0.1.

Miniature Power Sealed Relays MYQ/MYH

Sealed relays that are tough in environments where dust or corrosive gases, etc., are present

- Plastic sealed relays (MYQ) and hermetically sealed relays (MYH) that are resistant to effects from the surrounding environment
- Highly airtight structures that are tough in environments where corrosive gases such as chloride gas, sulfuric gas, and silicone gas are generated. They are also resistant to environments where salt damage is occurred and where dust is generated.
- Prevent relay contact failures via a highly airtight structure.

! | Refer to Safety Precautions on pages 53 to 54 and Safety |
| :--- |
| Precautions for All Relays. |

Refer to the standards certifications and compliance section of your OMRON website for the latest information on certified models.

Features

Highly Airtight Relays (Plug-in Terminals)

Seal performance	Degree of protection	Typical relay	Features
High		MYH	Sealing with metals, the glass case and base, etc. with inert gases (N2) inside makes it airtight structure which provides the external casing with durability against harmful corrosion, and prevents corrosive gases from intruding inside relays.
Lealed			

Hermetically Sealed Relays: MYH

These realize excellent reliability even in environments where dust is generated or where corrosive gases (chloride gas, sulfuric gas, silicone gas, etc.) are present.

Model Number Structure

Model Number Legend

(1)

(3)

(4)
(1) Basic model name MY: Miniature Power Sealed Relays
(2) Contacts/seals

Q4: 4-pole, single contacts, plastic sealed relays
Q4Z: 4-pole, bifurcated contacts, plastic sealed relays
4H: 4-pole, single contacts, hermetically sealed relays
4ZH: 4-pole, bifurcated contacts, hermetically sealed relays
(3) Type

None: None
$\mathrm{N}: \quad$ With operation indicator* *Only MYQ (plastic sealed relay)
(4) Options, terminal type

None: Plug-in terminals
02: Plastic sealed relays, PCB terminals
0: \quad Hermetically sealed relays, PCB terminals

Ordering Information

When your order, specify the rated voltage.

Plastic Sealed Relays

-Plug-in terminals

Classification	Number of poles	Contacts	Model	Rated voltage	With operation indicator	
					Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	4	Single	MYQ4	$\begin{aligned} & \hline \text { 100/110, 110/120, } \\ & 200 / 220,220 / 240 \text { VAC } \end{aligned}$	MYQ4N	24, 100/110, 110/120, 200/220, 220/240 VAC
				24 VDC		12, 24, 48, 100/110 VDC
		Bifurcated	MYQ4Z	$\begin{aligned} & \text { 100/110, 110/120, } \\ & \text { 200/220 VAC } \end{aligned}$		
				12, 24 VDC		

-PCB terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	4	Single	MYQ4-02	50, 200/220, 220/240 VAC
				24 VDC
		Bifurcated	MYQ4Z-02	100/110 VAC
				24, 48 VDC

Hermetically Sealed Relays

- Plug-in terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with	Electrical Appliances and Material Safety Act)	Single		$24,100 / 110,110 / 120$ VAC
			MY4ZH	$24,24,48,100 / 110$ VDC

OPCB terminals

Classification	Number of poles	Contacts	Model	Rated voltage
Standard models (compliant with Electrical Appliances and Material Safety Act)	4	Single	MY4H-0	110/120 VAC
				24 VDC
		Bifurcated	MY4ZH-0	24, 100/110 VDC

Ratings and Specifications

-Operating coil (AC)

Rated voltage (V)		Rated current (mA)		Coil resistance (Ω)	Coil inductance (H)		Must operate voltage (V)*1	Must release voltage (V)*2	Maximum voltage (V)	Power consumption (VA, W)
		50 Hz	60 Hz		Armature OFF	Armature ON				
AC	24	53.8	46	180	0.69	1.3	80\% max.	30\% min.	110\% max. of rated voltage	Approx. 0.9 to 1.3 (at 60 Hz)
	100/110	11.7/12.9	10/11	3,750	14.54	24.6				
	110/120	9.9/10.8	8.4/9.2	4,430	19.2	32.1				
	200/220	6.2/6.8	5.3/5.8	12,950	54.75	91.07				
	220/240	4.8/5.3	4.2/4.6	18,790	83.5	136.4				
DC	12	75		165	0.734	1.37		10\% min.		Approx. 0.9
	24	36.9		650	3.2	5.72				
	48	18.5		2,600	10.6	21.0				
	100/110	9.1/10		11,000	45.6	86.0				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $+15 \% /-20 \%$ for $A C$ rated current and $\pm 15 \%$ for $D C$ coil resistance.
2. The $A C$ coil resistance and coil inductance values are for reference only.
3. Operating characteristics were measured at a coil temperature of $23^{\circ} \mathrm{C}$.
4. The maximum voltage capacity was measured at an ambient temperature of $23^{\circ} \mathrm{C}$.
*1. There is variation between products, but actual values are 80% maximum. To ensure operation, apply at least 80% of the rated value.
*2. There is variation between products, but actual values are 30% minimum for AC and 10% minimum for DC. To ensure release, use a value that is lower than the specified value.

-Contact Ratings

Plastic Sealed Relays: MYQ

Number of poles (contact configuration) Contact structure Load	4-pole (4PDT)	
	Single/bifurcated	
	Resistive load	Inductive load $(\cos \varphi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$
Rated load	1 A at 220 VAC 1 A at 24 VDC	0.5 A at 220 VAC 0.5 A at 24 VDC
Rated carry current	1 A	
Maximum switching voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$	
Maximum switching current	1 A	
Maximum switching power	$\begin{aligned} & 220 \mathrm{VA} \\ & 24 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 110 \mathrm{VA} \\ & 12 \mathrm{~W} \end{aligned}$
Contact material	Au plating + Ag	

Hermetically Sealed Relays: MYH

Number of poles (contact configuration) Contact structure Load	4-pole (4PDT)			
	Single		Bifurcated	
	Resistive load	Inductive load ($\cos \varphi=0.4$, L/R = 7 ms)	Resistive load	Inductive load ($\cos \varphi=0.4$, $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	3 A at 110 VAC 3 A at 24 VDC	$\begin{aligned} & 0.8 \mathrm{~A} \text { at } \\ & 110 \mathrm{VAC} \\ & 1.5 \mathrm{~A} \text { at } \\ & 24 \mathrm{VDC} \end{aligned}$	$\begin{array}{\|l} \hline 3 \mathrm{~A} \text { at } \\ 110 \mathrm{VAC} \\ 3 \mathrm{~A} \text { at } \\ 24 \text { VDC } \end{array}$	0.8 A at 110 VAC 1.5 A at 24 VDC
Rated carry current	3 A			
Maximum switching voltage	$\begin{aligned} & 125 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$			
Maximum switching current	3 A			
Maximum switching power	$\begin{aligned} & 330 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 88 \mathrm{VA} \\ & 36 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 330 \mathrm{VA} \\ & 72 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 88 \mathrm{VA} \\ & 36 \mathrm{~W} \end{aligned}$
Contact material	Au plating + Ag			

Characteristics

Model		MYQ	MYH
Contact resistance*1		$50 \mathrm{~m} \Omega$ max.	
Operate time*2		20 ms max.	
Release time*2		20 ms max.	
Maximum switching frequency	Mechanical	18,000 operations/h	
	Rated load	1,800 operations/h	
Insulation resistance*3		$100 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	1,500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min
	Between contacts of different polarity	1,500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min
	Between contacts of the same polarity	1,000 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min	700 VAC at $50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.5-\mathrm{mm}$ single amplitude (1.0-mm double amplitude)	
Shock resistance	Destruction	1,000 m/s ${ }^{2}$	
	Malfunction	$200 \mathrm{~m} / \mathrm{s}^{2}$	
Endurance	Mechanical	$\begin{array}{ll}\text { Single contacts: } & \text { AC: } 50,000,000 \text { operations min., } \\ & \text { DC: } 100,000,000 \text { operations min. }\end{array}$ Bifurcated contacts: 5,000,000 operations min., DC: 5,000,000 operations min. (switching frequency: 18,000 operations/h)	Single contacts: $\quad 50,000,000$ operations min . Bifurcated contacts: 5,000,000 operations min. (switching frequency: 18,000 operations/h)
	Electrical*4	Single contacts: $\quad 200,000$ operations min . Bifurcated contacts: 100,000 operations min. (at rated load, switching frequency: 1,800 operations/h)	Single contacts: 100,000 operations min. Bifurcated contacts: 50,000 operations min. (at rated load, switching frequency: 1,800 operations/h)
Failure rate P Level (reference value)*5		$\begin{array}{ll}\text { Single contacts: } & 1 \mathrm{~mA} \text { at } 1 \text { VDC } \\ \text { Bifurcated contacts: } & 100 \mu \mathrm{~A} \text { at } 1 \text { VDC }\end{array}$	$\begin{array}{ll}\text { Single contacts: } & 100 \mu \mathrm{~A} \text { at } 1 \text { VDC } \\ \text { Bifurcated contacts: } & 100 \mu \mathrm{~A} \text { at } 100 \mathrm{mVDC}\end{array}$
Ambient operating temperature*6		-55 to $60^{\circ} \mathrm{C}$	-25 to $60^{\circ} \mathrm{C}$
Ambient operating humidity		5\% to 85\%	
Weight		Approx. 35 g	Approx. 50 g

Note: The data shown above are initial values.
*1. Measurement conditions: $\quad 1 \mathrm{~A}$ at 5 VDC using the voltage drop method.
*2. Measurement conditions: With rated operating power applied, not including contact bounce.
Ambient temperature condition: $23^{\circ} \mathrm{C}$
*3. Measurement conditions: For 500 VDC applied to the same location as for dielectric strength measurement
*4. Ambient temperature condition: $23^{\circ} \mathrm{C}$
*5. This value was measured at a switching frequency of 120 operations per minute.
*6. With no icing or condensation.

Engineering Data (Reference Value)

Maximum Switching Capacity

MYQ4(Z)

Endurance Curve MYQ4

Note: The endurance of bifurcated contacts is one-half that of single contacts.

MY4(Z)H

MY4H

Note: The endurance of bifurcated contacts is one-half that of single contacts

MYQ.MYH

Dimensions

-Plug-in terminals

-PCB terminals

Plastic Sealed Relays
MYQ4(Z)-02

PCB Processing Dimensions

Note: The dimensional
tolerance is ± 0.1

Hermetically Sealed Relays
MY4(Z)H-0
PCB Processing Dimensions (Bottom View)

Common Options (Order Separately)

Ordering Information

Front-mounting Sockets

| Number
 of pins | Applicable relay model*1 | Terminal Type | Mounting Method |
| :--- | :--- | :--- | :--- | :--- |

[^0]MY/MYK/MYQ•MYH

Back-mounting Sockets

Number of pins	Applicable relay model*1	Terminal Type	Appearance	Model	Appearance	Models with Hold-down Clips*2
14	MY4 \square, MY4 $\square(S)$, MY2K, MY4H, MYQ4	Solder terminals		PY14		PY14-Y1
	MY4Z \square-CBG-CR					PY14-Y3
	MY4 \square, MY4 $\square(S)$, MY2K, MY4H, MYQ4 \square	Wrapping terminals Terminal length: 25 mm		PY14QN		PY14QN-Y1
	MY4Z \square-CBG-CR					PY14QN-Y3
	MY4 \square, MY4 \square (S), MY2K, MY4H, MYQ4	Wrapping terminals Terminal length: 20 mm		PY14QN2		PY14QN2-Y1
	MY4Z \square-CBG-CR					PY14QN2-Y3
	MY4 \square, MY4 $\square(S)$, MY4Z \square-CBG-CR MY2K, MY4H, MYQ4	PCB terminals		PY14-02	-	-

*1. The applicable relay model is a plug-in terminal type.
*2. The hold-down clips for connecting the relay and socket come as a set with the socket.

MY/MYK/MYQ.MYH

Hold-down Clip

*1. The appearance shown is one in which the relay, socket, and hold-down clip are assembled.
*2. Hold-down clips are used in sets of two. However, PYC-P and PYC-1.
*3. The weight shown above is the weight for one hold-down clip.

Socket Accessories

Hold-down Clip

-List of Hold-down Clip Models

For Front-connecting Sockets

Mounting method Terminal Type Applicable sockets		DIN track mounted/screw mounted						Screw mounting only
		Push-In Plus Terminal		Screw terminal (M3 screw size)			Screw terminal (M3.5 screw size)	
		PYF-08-PU-L	PYF-14-PU-L	PYF08A(-E)	PYF11A	PYF14A(-E)	PYF14T	PYF08M
Number of pins	Applicable relay model*1	Hold-down Clip model*2						
8	MY2 \square	-	-	PYC-A1	-	-	-	PYC-P
	MY2IN(S)*3	-	-	PYC-E1	-	-	-	-
	MY2Z \square-CR	Y92H-3	-	Y92H-3	-	-	-	-
11	MY3	-	-	-	PYC-A1	-	-	-
14	MY4 \square, MY4(Z)H, MYQ4, MYQ4N, MYQ4Z, MY4 $\square(S)$, MY2K	-	-	-	-	PYC-A1	PYC-A1	-
	$\underset{* 4}{\text { MY4Z } \square \text {-CBG-CR }}$	-	Y92H-3	-	-	Y92H-3	Y92H-3	-

For Back-connecting Sockets

Terminal Type		Solder terminals			Wrapping terminals (PY \square QN terminal length: 25 mm , PY \square QN2 terminal length: $\mathbf{2 0} \mathbf{~ m m}$)			PCB terminals		
		PY08	PY11	PY14	PY08QN(2)	PY11QN(2)	PY14QN(2)	PY08-02	PY11-02	PY14-02
Number of pins	Applicable relay model*1	Hold-down Clip model*2								
8	$\begin{aligned} & \text { MY2 } \square \\ & \text { MY2IN(S)*3 } \end{aligned}$	PYC-P	-	-	PYC-P	-	-	PYC-P	-	-
	MY2Z \square-CR	PYC-1	-	-	PYC-1	-	-	PYC-1	-	-
11	MY3	-	PYC-P	-	-	PYC-P	-	-	PYC-P	-
14	MY4 \square, MY4(Z)H, MYQ4, MYQ4N, MYQ4Z, MY4 \square (S), MY2K	-	-	PYC-P	-	-	PYC-P	-	-	PYC-P
	$\begin{aligned} & \text { MY4Z } \square \text {-CBG-CR } \\ & { }^{2} 4 \end{aligned}$	-	-	PYC-1	-	-	PYC-1	-	-	PYC-1

*1. The applicable relay model is a plug-in terminal type.
*2. This is the model of the applicable hold-down clips. Hold-down clips are sold in sets of two. However, PYC-P and PYC-1 contain just one hold-down clip.
*3. We recommend using PYC-E1 hold-down clips for MY2IN(S) relays with a latching lever.
(If PYC-A1 is used with MY2IN(S), the latching lever will be blocked by the hold-down clip and the lever will not operate.)
*4. The release lever cannot be mounted if the relay height is 53 mm or more.
If the relay height is 53 mm or more, use in combination with hold-down clip Y92H-3.

-Front-connecting Socket Accessories

For Push-In Plus Terminal Sockets (PYF-08-PU(-L)/PYF-14-PU(-L))
Short Bars

Applicable sockets	Pitch	Application	Shape/external dimensions	Number of poles	$\begin{gathered} \mathrm{L} \\ \text { (Length) } \end{gathered}$	Insulati on color	Model*1
PYF-08-PU(-L)PYF-14PU(-L)	7.75 mm	Bridging contact terminals (common)	3.90	2	15.1	Red (R) Blue (S) Yellow(Y)	PYDN-7.75-020 \square
			S	3	22.85		PYDN-7.75-030 \square
				4	30.6		PYDN-7.75-040 \square
			$\stackrel{\rightharpoonup}{2.25}$	20	154.6		PYDN-7.75-200 \square
	31.0 mm	For Coil terminals		8	224.35		PYDN-31.0-080 \square

*1. Replace the box (\square) in the model number with the code for the covering color. \square Color selection: $R=$ Red, $S=B l u e, Y=$ Yellow
Labels

Applicable sockets	Model
PYF-08-PU(-L)	XW5Z-P4.0LB1
PYF-14PU(-L)	(1 sheet/60 pieces)

For Screwless Terminal Sockets (PYF08S/PYF14S)
Short Bars

Applicable sockets	Pitch	Application	Shape/external dimensions	Number of poles	Insulati on color	Model*1
PYF08S	19.7 mm	For bridging coils between sockets	Insulation \qquad	2	Red (R) Blue (B)	PYDM-08S (50 pcs./bag)
PYF14S	27.5 mm			2		PYDM-14S (50 pcs./bag)

*1. Replace the box (\square) in the model number with the code for the covering color. \square Color selection: $\mathrm{R}=\mathrm{Red}, \mathrm{B}=\mathrm{Blue}$
Labels

Applicable sockets	Model
PYF08S	R99-11
PYF14S	(100 pcs./bag)

Release Levers

Applicable sockets

For Screw Terminal Sockets (PYF08A/PYF14A)
Short Bars

Applicable sockets	Pitch	Application	Shape/external dimensions	Number of poles	Insulation color	Model* ${ }^{\text {1 }}$
		For bridging adjacent sockets		2		PYD-025B \square (2P) $(10 \mathrm{pcs} . / \mathrm{bag})$ (10 pcs./bag)
PYF08A	22 mm			8		PYD-085B \square (8P) $(10 \mathrm{pcs} . / \mathrm{bag})$ (10 pcs./bag)
PYF14A			5)	2	S (Blue) R (Red)	$\text { PYD-026B } \square \text { (2P) }$ (10 pcs./bag)
	29 mm			8		PYD-086B $\square(8 \mathrm{P})$ $(10$ pcs./bag)
	7 mm	For bridging with the same socket		2	B (Black) Y (Yellow)	$\begin{aligned} & \text { PYD-020B } \square(2 P) \\ & (50 \mathrm{pcs} . / \mathrm{bag}) \end{aligned}$
				3		$\begin{aligned} & \text { PYD-030B } \square \text { (3P) } \\ & (10 \mathrm{pcs} . / \mathrm{bag}) \end{aligned}$

*1. Replace the box (\square) in the model number with the code for the covering color.

Socket Mounting Plates (For Back-connecting Socket PY $\square /$ Solder Terminals, PY $\square \mathbf{Q N}(2) /$ Wrapping Terminals)

Applicable Sockets		Socket Mounting Plates		
Model	Models with hold-down clips	Appearance	Number of sockets	Model
PY08 PY08QN PY08QN2 PY11 PY11QN PY11QN2 PY14 PY14QN PY14QN2	```PY08-Y1, PY08-Y3 PY08QN-Y1, PY08QN-Y3 PY08QN2-Y1, PY08QN2-Y3 PY11-Y1 PY11QN-Y1 PY11QN2-Y1 PY14-Y1, PY14-Y3 PY14QN-Y1, PY14QN-Y3 PY14QN2-Y1, PY14QN2-Y3```	-	1	PYP-1
			18	PYP-18*
			36	PYP-36*

*You can cut the PYP-18 and PYP-36 to any required length.
Parts for Track Mounting

Type		Appearance	Model
DIN Tracks	1 m		PFP-100N
	0.5 m		PFP-50N
End Plate*			PFP-M
Spacer			PFP-S

Note: The track conforms to DIN standards.
*When mounting DIN track, please use End Plate (Model PFP-M).

Ratings and Specifications

Characteristics

Sockets

								electric streng				
Model	Connection	Number of pins	Terminal Type	Ambient operating temperature	Ambient operating humidity	Continuous carry current	Between contact terminals of same polarity	Between contact terminals of different polarity	Between coil and contact terminals	Insulation resistance *1	Weight	
PYF-08-PU	Front	8	Push-In Plus Terminal	-40 to $70^{\circ} \mathrm{C}$	$10 A^{*} 2$ $10 A^{*} 2$ 7 A		$\begin{aligned} & 2,000 \text { VAC } \\ & \text { for } 1 \text { min } \end{aligned}$	$\begin{aligned} & 2,000 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$2,000 \text { VAC }$ for 1 min	$\begin{aligned} & 1,000 \mathrm{M} \Omega \\ & \min . \\ & (500 \mathrm{VAC}) \end{aligned}$	Approx. 80 g	
PYF08S			Screwless terminal	-55 to $70^{\circ} \mathrm{C}$			Approx. 46 g					
PYF08A			Screw terminal				Approx. 32 g					
PYF08A-E							Approx. 32 g					
PYF08M						5 A		$\begin{aligned} & 1,500 \text { VAC } \\ & \text { for } 1 \text { min } \end{aligned}$	$\begin{aligned} & 1,500 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$		$\begin{aligned} & \text { 1,500 VAC } \\ & \text { for } 1 \text { min } \end{aligned}$	Approx. 26 g
PYF11A		11	Screw terminal					$\begin{aligned} & 2,000 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \text { 2,000 VAC } \\ & \text { for } 1 \text { min } \end{aligned}$		$2,000 \text { VAC }$ for 1 min	Approx. 43 g
PYF-14-PU		14	Push-In Plus Terminal	-40 to $70^{\circ} \mathrm{C}$		6 A						Approx. 87 g
PYF14S			Screwless terminal	-55 to $70^{\circ} \mathrm{C}$		5 A	Approx. 62 g					
PYF14A			Screw terminal				Approx. 49 g					
PYF14A-E						3 A	Approx. 49 g					
PYF14T							Approx. 53 g					
PY08	Back	8	Solder terminals	-55 to $70^{\circ} \mathrm{C}$	$\begin{aligned} & \text { 5\% to } \\ & 85 \% \end{aligned}$	7 A	$\begin{aligned} & 1,500 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 1,500 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \text { 1,500 VAC } \\ & \text { for } 1 \text { min } \end{aligned}$	$100 \mathrm{M} \Omega$ min.	Approx. 8 g	
PY08-Y1											Approx. 9 g	
PY08-Y3											Approx. 9 g	
PY08QN			Wrapping terminals (Terminal length: 25 mm)								Approx. 12 g	
PY08QN-Y1											Approx. 13 g	
PY08QN-Y3											Approx. 13 g	
PY08QN2			Wrapping terminals								Approx. 11 g	
PY08QN2-Y1			(Terminal length:								Approx. 12 g	
PY08QN2-Y3			20 mm)								Approx. 12 g	
PY08-02			PCB terminals								Approx. 7 g	
PY11											Approx. 9 g	
PY11-Y1											Approx. 10 g	
PY11QN			Wrapping terminals								Approx. 13 g	
PY11QN-Y1		11	(Terminal length: 25 mm)			5 A	for 1 min	for 1 min	for 1 min	min.	Approx. 14 g	
PY11QN2			Wrapping terminals								Approx. 12 g	
PY11QN2-Y1			(Terminal length: 20 mm)								Approx. 13 g	
PY11-02			PCB terminals								Approx. 8 g	
PY14		14	Solder terminals			3 A	$\begin{aligned} & 1,500 \text { VAC } \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & 1,500 \mathrm{VAC} \\ & \text { for } 1 \mathrm{~min} \end{aligned}$	$1,500 \mathrm{VAC}$ for 1 min	$\begin{aligned} & 100 \mathrm{M} \Omega \\ & \text { min. } \end{aligned}$	Approx. 10 g	
PY14-Y1											Approx. 11 g	
PY14-Y3											Approx. 11 g	
PY14QN			Wrapping terminals (Terminal length: 25 mm)								Approx. 14 g	
PY14QN-Y1											Approx. 15 g	
PY14QN-Y3											Approx. 15 g	
PY14QN2			Wrapping terminals (Terminal length: 20 mm)								Approx. 13 g	
PY14QN2-Y1											Approx. 14 g	
PY14QN2-Y3											Approx. 14 g	
PY14-02			PCB terminals								Approx. 9 g	

*1. For 500 VDC applied to the same location as for dielectric strength measurement.
*2. The carrying current of 10 A is for an ambient temperature of $55^{\circ} \mathrm{C}$ or below. At an ambient temperature of $70^{\circ} \mathrm{C}$, the value is 7 A .
*3. This model is a set including a socket and relay hold-down clips. This weight shown is the total including the socket and relay hold-down clips.

Socket Accessories

For Front-connecting Sockets

Short Bars

Application	Applicable sockets	Model	Maximum carry current	Ambient operating temperature	Ambient operating humidity
Bridging contact terminals (common)	$\begin{aligned} & \text { PYF-08-PU(-L) } \\ & \text { PYF-14-PU(-L) } \end{aligned}$	PYDN-7.75-020 \square	20 A	-40 to $70^{\circ} \mathrm{C}$	5\% to 85\%
		PYDN-7.75-030 \square			
		PYDN-7.75-040 \square			
		PYDN-7.75-200 \square			
	PYF08A	PYD-025B \square	20 A (However, 18 A when $70^{\circ} \mathrm{C}$)	-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	45% to 85% (with no icing or condensation)
		PYD-085B \square			
	PYF14A	PYD-026B \square			
		PYD-086B \square			
		PYD-020B \square			
		PYD-030B \square			
For Coil terminals	$\begin{aligned} & \text { PYF-08-PU(-L) } \\ & \text { PYF-14-PU(-L) } \end{aligned}$	PYDN-31.0-080 \square	20 A	-40 to $70^{\circ} \mathrm{C}$	5\% to 85\%
	PYF08S	PYDM-08S \square	10 A	-40 to $70^{\circ} \mathrm{C}$	5\% to 85\%
	PYF14S	PYDM-14S \square	10 A	-40 to $70^{\circ} \mathrm{C}$	5\% to 85%

Certified Standards

-CSA certification (File No. LR031928)

Model	Ratings	Class number	Standard number
PYF-08-PU	$10 \mathrm{~A}, 250 \mathrm{~V}$		
PYF-14-PU	$6 \mathrm{~A}, 250 \mathrm{~V}^{*}$		
PYF08S	$10 \mathrm{~A}, 250 \mathrm{~V}$	321107	CSA C22.2 No14
PYF14S	$5 \mathrm{~A}, 250 \mathrm{~V}$		
PY \square	$7 \mathrm{~A}, 250 \mathrm{~V}$		

*When power is supplied to all four poles, use with a total power current that does not exceed 20 A .
-UL certification (File No. E87929)

Model	Ratings	Standard number	Category	Listed/Recognized
PYF-08-PU	$10 \mathrm{~A}, 250 \mathrm{~V}$	UL508	SWIV2	Recognition
PYF-14-PU	$6 \mathrm{~A}, 250 \mathrm{~V}^{*}$			
PYF08S PYF14S	$10 \mathrm{~A}, 250 \mathrm{~V}$			
$\begin{aligned} & \text { PY } \square \\ & \text { PYF } \square \mathbf{A (- E)} \end{aligned}$	$7 \mathrm{~A}, 250 \mathrm{~V}$			

*When power is supplied to all four poles, use with a total power current that does not exceed 20 A .

-TÜV Rheinland certification

Model	Ratings	Standard number	Certification No.
PYF-08-PU	$10 \mathrm{~A}, 250 \mathrm{~V}^{*}$		
PYF-14-PU	$6 \mathrm{~A}, 250 \mathrm{~V}$		

*Ratings are for an ambient temperature of $55^{\circ} \mathrm{C}$ or below. At an ambient temperature of $70^{\circ} \mathrm{C}$, the value is 7 A .

- VDE certification

Model	Standard number	Certification No.
PYF08S	VDE0627 (EN61984)	40015509
PYF14		

Height with Socket
-Front-connecting Sockets

- Push-In Plus Terminal
(PYF- \square-PU)

- Screwless terminal (PYF08S, PYF14S)

- Screw terminal
(PYF $\square A(-E)$, PYF14T, PYF08M)

Note: 1. The PYF $\square \mathrm{A}$ can be mounted on a track or with screws.
2. The heights given in parentheses are the measurements for 53 -mm-high Relays
3. Use the PYC-P Hold-down Clip for the PYF08M.

-Back-connecting Sockets

- Solder terminals/wrapping terminals (PY \square)

- PCB terminals (PY $\square-02$)

Front-connecting Sockets

-Push-In Plus Terminal

-Screwless terminal

PYF08S

Terminal Arrangement/Internal

 Connection Diagram
(Top View)
Note: The number shown in parentheses is the DIN standard.

PYF14S

Terminal Arrangement/Internal
Connection Diagram

Note: The number shown in parentheses is the DIN standard.

Front-connecting Sockets

-Screw terminal

NW

PYF08A

PYF08A-E
(Finger-protection structure)

Terminal Arrangement/ Internal Connection Diagram

(Top View)

Mounting Hole Dimensions

Note: Track mounting is also possible

PYF08M

Terminal Arrangement/Internal Connection Diagram

(Top View)

PYF11A

Terminal Arrangement/Internal Connection Diagram

(Top View)

Mounting Hole Dimensions

Note: Track mounting is also possible.

PYF14A-E (Finger-protection structure)

Terminal Arrangement/Internal Connection Diagram

(Top View)

Note: Track mounting is also possible.

Mounting Hole Dimensions

Back-connecting Socket

 -Solder terminals
NW

PY08

*PY08-Y \square includes the potion indicated by broken line

Terminal Arrangement/Internal Connection Diagram

(1)	(4)
(5)	(8)
(9)	(12)
(13)	(14)

(Bottom View)

Mounting Hole Dimensions

PY11
PY11-Y1
*PY11-Y1 includes the potion indicated by broken line.

Terminal Arrangement/Internal Connection Diagram

(1)	(2)	(3)
(4)	(5)	(6)
(7)	(8)	(9
(10)		(11)
(Bottom View)		

Terminal Arrangement/Internal Connection Diagram

(1) (2) (3) (4)	
(5) (6) (7) (8)	
(13)	(14)

(Bottom View)

Mounting Hole Dimensions

PY14
PY14-Y1
PY14-Y3

*PY14-Y \square includes the potion indicated by broken line.

Terminal Arrangement/Internal Connection Diagram
(Bottom View)

(1)	(4)
(5)	(8)
(9)	(12)
(13)	(14)

Mounting Hole Dimensions

PY08QN

ing terminals

PY08QN2
PY08QN2-Y1
PY08QN2-Y3

PY14QN/PY14QN2

PY14QN-Y1/PY14QN2-Y1
PY14QN-Y3 (L = 60 max.)

PY14QN2-Y3 (L = 60 max.)

Terminal Arrangement/Internal Connection Diagram

(1)	(2)	(3)
4	(5)	(6)
(7)	8	(9)
10		(1)

(Bottom View)

Mounting Hole Dimensions

*2. Dimensions in parentheses are for PY14QN2(-Y $\square)$.

Terminal Arrangement/Internal Connection Diagram

(1) (2) (3) (4)
(5) (6) (7) (8)
(9) (1) (1) (1)
(13) (14)

(Bottom View)

Mounting Hole Dimensions

-PCB terminals

PY08-02

Terminal Arrangement/Internal Connection Diagram

(1)	(4)
(5)	(8)
(9)	(12)
(3)	(14)

(Bottom View)

Terminal Arrangement/Internal Connection Diagram

(1)	(2)	(3)
(4)	(5)	(6)
(7)	(8)	(9)
(10)		(11)

(Bottom View)

Terminal Arrangement/Internal Connection Diagram

(1)	(2)	(3)
(4)		
(5)	(6)	(7)
(8)		
(9)	(10)	(11)
(12)		

(Bottom View)

Mounting Hole and PCB Dimensions

Socket Accessories

-Hold-down Clip

- PYC-A1
1 set (2 pcs.)

- PYC-E1
- PYC-P 1 set (2 pcs.)

- PYC-S
1 set (2 pcs.)

- Y92H-3
- PYC-1 1 set (2 pcs.)

-Socket Mounting Plates

PYP-1

PYP-18

PYP-36

-Accessories for DIN Track Mounting

DIN Tracks

End Plate

PFP-M

Spacer

PFP-S

Safety Precautions

Relays

Be sure to read the Safety Precautions for All Relays in the website at the following URL: http://www.ia.omron.com/product/cautions/36/safety_precautions.html

Warning Indications

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or may result in serious injury or death. Additionally there may be significant property damage.
Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or in property damage.
Supplementary comments on what to do or avoid doing, to prevent failure to operate, malfunction, or undesirable effects on product performance.

Meaning of Product Safety Symbols

| General caution |
| :--- | :--- |
| Indicates the possibility of non-specified general |
| cautions, warnings, and danger. |

\triangle CAUTION

Do not touch terminal sections (i.e., current-carrying parts) while power is being supplied.
Also, always mount the terminal cover.
Touching current-carrying parts may result in electric shock.
Do not touch the main unit while power is being supplied or immediately after the power supply has been turned OFF. The main unit will be extremely hot and may result in burns.

Precautions for Correct Use

OHandling

For models with a built-in operation indicator, models with a built-in diode, or high-sensitivity models, check the coil polarity when wiring and wire all connections correctly (DC operation).

Olnstallation

- There is no specifically required installation orientation, but make sure that the Relays are installed so that the contacts are not subjected to vibration or shock in their movement direction.

[^1]
-Relay Replacement

To replace the Relay, turn OFF the power supply to the load and Relay coil sides to prevent unintended operation and possible electrical shock.

-Applicable Sockets

Use only combinations of OMRON Relays and Sockets.
-Attaching and Removing Relay Hold-down Clips
When you attach a Hold-down Clip to or remove it from a Socket, wear gloves or take other measures to prevent injuring your fingers on the Hold-down Clip.

-Compliance with Electrical Appliances and Material Safety Act

- MY standard models comply with the Electrical Appliances and Material Safety Act.
- Always protect any exposed terminals (including Socket terminals) after wiring with insulation tubes or resin coating on PCBs.

Model	Number of poles	Operating Coil ratings	Contact ratings
MY	1	6 to 220 VAC	5 A, 200 VAC
	3	6 to 120 VDC	2
	4^{\star}	6 to 110 VAC 6 to 120 VDC	3 A, 115 VAC

*Under the Electrical Appliances and Material Safety Act, do not use the Type 4 model with a voltage that exceeds 150 VAC. However, this restriction can be ignored if compliance with the Electrical Appliances and Material Safety Act is not required.

OMiniature Power Relays: MY

Latching Levers

- Turn OFF the power supply when operating the latching lever. After you use the latching lever always return it to its original state.
- Do not use the latching lever as a switch.
- The latching lever can be used for 100 operations minimum.

About the Built-in Diode and CR Elements

The diode or CR element that are built into the Relay are designed to absorb the reverse voltage from the Relay coil. If a large surge in voltage is applied to the diode or CR element from an external source, the element will be destroyed.
If there is the possibility of large voltage surges that could be applied to the elements from an external source, take any necessary surge absorption measures.

Using Microloads with Infrequent Operation

If any standard MY-series Relays (e.g., MY4) are used infrequently to switch microloads, the contacts may become unstable and eventually result in failure contact. In this case, we recommend using the MY4Z-CBG Series, which has high contact reliability for microloads.

- Latching Relays (MYK)
- For applications that use a 200 VAC power supply, connect external resistors Rs and Rr to a 100 VAC Relay.

- Do not apply a voltage to the set and reset coils at the same time. If you apply the rated voltage to both coils simultaneously, the Relay will be set.
- The minimum pulse width in the performance column is the value for the following measurement conditions: an ambient temperature of $23^{\circ} \mathrm{C}$ with the rated operating voltage applied to the coil. Satisfactory performance may be unattainable due to decreased holding strength caused by changes in circuit conditions and ambient operating temperature, or due to changes caused by product aging.
During actual use, apply a pulse width of the rated operating voltage suitable for the actual load to the coil and reset this at least once per year as a means of dealing with product aging.

-Hermetically Sealed Relays (MYH/MYQ) Relays with PCB Terminals

When a Relay with PCB Terminals is mounted, a short-circuit can occur depending on the design of the PCB pattern because the Relay itself is made out of metal.
Solution
Refer to the external dimensions of the Relay and design the PCB pattern with enough space to prevent this problem.

Application Environments

Humid environments can cause insulation problems, which may result in short-circuiting or unintended operation. Solution
Do not use these Relays in any environment where the Relay will come into contact with water vapor, condensation, or water droplets. This can reduce the surface tension of the terminal insulating beads and cause short-circuiting or unintended operation due to insulation problem.

Optional Sockets (Order Separately)

Be sure to read the Safety Precautions for All Relays in the website at the following URL: http://www.ia.omron.com/product/cautions/36/safety_precautions.html

Front-connecting Sockets

-Push-In Plus Terminal Sockets (PYF-08-PU(-L), PYF-14-PU(-L))
Refer to Safety Precautions on the Push-In Plus Terminal Block Socket PYF- $\square \square$-PU/P2RF- $\square \square$-PU Data Sheet (Catalog No. SGFR-218).

-Screwless Terminal Sockets (PYF08S, PYF14S)
Refer to Safety Precautions on the Screwless Terminal Socket PYF $\square \square S /$ P2RF- $\square \square$ S Data Sheet (Catalog No. CDRR-011).

-Screw Terminal Sockets (PYF08A(-E), PYF08M, PYF11A, PYF14A(-E), PYF-14T)
Be sure to read the Safety Precautions for All Relays, 4-2-1 Panel-mounting Sockets and 4-2-2 Relay Removal Direction of the website at the following URL: http://www.ia.omron.com/product/cautions/36/safety_precautions.html

Back-connecting Socket

-Solder Terminal Sockets (PY08(-Y1/-Y3), PY11(-Y1/-Y3))
-Wrapping Terminals Sockets (PY08QN(-Y1/-Y3), PY08QN2(-Y1/-Y3), PY11QN(-Y1), PY11QN2(-Y1)) - PCB Terminal Sockets (PY08-02, PY11-02)

Be sure to read the Safety Precautions for All Relays, 4-2-3 Back-connecting Sockets and 4-2-5 Terminal Soldering of the website at the following URL: http://www.ia.omron.com/product/cautions/36/safety_precautions.html

Terms and Conditions Agreement

Read and understand this catalog.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.

Limitation on Liability; Etc.

> OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
> Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Authorized Distributor:

[^0]: *1. The applicable relay model is a plug-in terminal type.
 *2. There are screw mounting holes in the DIN hooks on the PYF- $\square \square-$ PU and P2RF- $\square \square$-PU. Pull out the DIN hook tabs to mount the Sockets with screws.
 *3. The finger-protection type (PYF $\square A-E)$ is a type in which the terminal cover is integrated into the socket. Round terminals cannot be used. Use forked terminals or ferrules instead.

[^1]: - Use two M3 screws to mount the case-surface mounting (MY \square F) and tighten them securely. (Appropriate tightening torque: $0.98 \mathrm{~N} \cdot \mathrm{~m}$)

