

DC-DC CONVERTER 40W, Highest Power Density

FEATURES

- Smallest Encapsulated 40W Converter
- Ultra-compact 2" X 1" Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- Excellent Efficiency up to 91%
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MKWI40 series is the latest generation of high performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 40W in an encapsulated, shielded metal package with dimensions of just 2.0"x1.0"x0.4". All models provide ultra-wide 4:1 input voltage range and precisely regulated output voltages.

Advanced circuit topology provides a very high efficiency up to 91% which allows an operating temperature range of -40°C to +80°C. Further features include remote On/Off, trimmable output voltage, under-voltage lockout as well as overload and over-temperature protection. Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and many other space critical applications.

Model Selection	Guide									
Model	Input	Output	Out	Output		Input		Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Cur	rent	Cur	rent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA (typ.)	VDC	μF	%
MKWI40-24S033		3.3	8000	0	1240	90		3.9	21000	89
MKWI40-24S05		5	8000	0	1850	90		6.2	13600	90
MKWI40-24S12		12	3330	0	1870	95		15	2400	89
MKWI40-24S15	24	15	2670	0	1870	105	30	18	1500	89
MKWI40-24S24	(9 ~ 36)	24	1670	0	1835	115		30	600	91
MKWI40-24D12		±12	±1670	±145	1890	65		±15	1200#	88
MKWI40-24D15		±15	±1330	±110	1890	65		±18	750#	88
MKWI40-48S033		3.3	8000	0	620	55		3.9	21000	89
MKWI40-48S05		5	8000	0	930	55		6.2	13600	90
MKWI40-48S12	40	12	3330	0	930	60		15	2400	90
MKWI40-48S15	48	15	2670	0	930	65	20	18	1500	90
MKWI40-48S24	(18 ~ 75)	24	1670	0	918	75		30	600	91
MKWI40-48D12		±12	±1670	±145	950	45		±15	1200#	88
MKWI40-48D15		±15	±1330	±110	950	45		±18	750#	88

For each output

DC-DC CONVERTER 40W, Highest Power Density

Input Specifications

input opecifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Innut Surge Valtage (100mg, may)	24V Input Models	-0.7		50	
Input Surge Voltage (100ms. max.)	48V Input Models	-0.7		100	
	24V Input Models		9		
Start-Up Threshold Voltage	48V Input Models			18 V	VDC
	24V Input Models		8.3		
Under Voltage Lockout	48V Input Models		16.5		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models Internal LC Type				

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0V -	~ 1.2V or Short C	Circuit				
Control Input Current (on)	Vctrl = 5.0V		0.5		mA		
Control Input Current (off)	Vctrl = 0V		-0.5		mA		
Control Common	Refer	enced to Negativ	ve Input				
Standby Input Current	Nominal Vin		2.5		mA		

Output Specifications

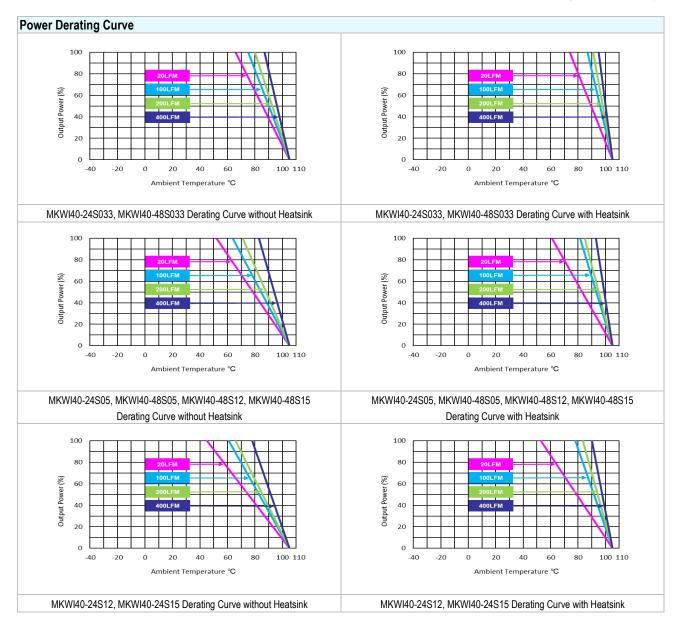
Conditio	ons / Model	Min.	Тур.	Max.	Unit			
				±1.0	%Vnom.			
Dual Output,	Balanced Loads			±2.0	%			
Vin=Min. to N	Max. @Full Load			±0.5	%			
Min. Load to Full	Single Output			±0.5	%			
Load	Dual Output			±1.0	%			
Asymmetrical Load	d 25%/100% Full Load			±5.0	%			
No Minimu	m Load Requirement for S	Single Output Models, for dual Output Models see Table						
	3.3V & 5V Models			100	mV _{P-P}			
0-20 MHz Bandwidth	12V, 15V & 24V Models			150	mV _{P-P}			
	Dual Output Models			150	mV _{P-P}			
05%			250		µsec			
25% L0ad	Step Change		±3	±5	%			
				±0.02	%/°C			
% of Nominal Output	24Vo Models			+20 / -10	0/			
Voltage	Other Models			±10	%			
	Current Limitation	n at 150% typ. of	lout max., Hicci	qr				
24Vc	24Vo Models			Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)				
Othe	Other Models			Continuous, Automatic Recovery (Hiccup Mode 1.5Hz typ.				
	Dual Output, Vin=Min. to N Min. Load to Full Load Asymmetrical Load No Minimu 0-20 MHz Bandwidth 25% Load % of Nominal Output Voltage	Load Dual Output Asymmetrical Load 25%/100% Full Load No Minimum Load Requirement for S 0-20 MHz Bandwidth 3.3V & 5V Models 0-20 MHz Bandwidth 12V, 15V & 24V Models Dual Output Models Dual Output Models 25% Load Step Change 24Vo Models Voltage Other Models Current Limitation 24Vo Models	Image: Constraint of the second sec	Image: Second	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			

General Specifications

General Specifications							
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit		
1/Q location Valtage	60 Seconds	1500			VDC		
I/O Isolation Voltage	1 Seconds	1800			VDC		
I/O Isolation Resistance	500 VDC	1000			MΩ		
I/O Isolation Capacitance	100kHz, 1V			1500	pF		
	24Vo Models		285		kHz		
Switching Frequency	Other Models		320		kHz		
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign		328,000		Hours		
	UL/cUL 60950-1 recognitior	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognitio	ition(UL certificate), IEC/EN 62368-1(CB-report)					

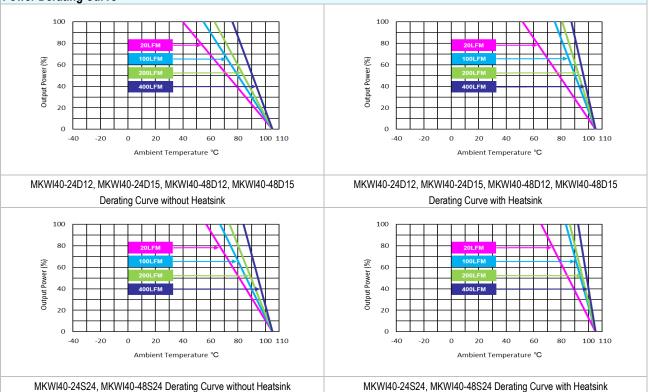
DC-DC CONVERTER 40W, Highest Power Density

EMC Specifications


ENIC Specifications				
Parameter		Standard	ls & Level	Performance
EMI	Conduction	EN55032	With external components	Class A
EMI ₍₅₎	Radiation	EN00002	With external components	Class A
	EN 55035			
	ESD	EN61000-4-2 air ± 8kV , Contact ± 6kV EN61000-4-3 10V/m EN61000-4-4 ±2kV		A
	Radiated immunity			A
EMS ₍₅₎	Fast transient			A
	Surge		EN61000-4-5 ±1kV	A
	Conducted immunity		EN61000-4-6 10Vrms	A
	PFMF		EN61000-4-8 3A/m	A

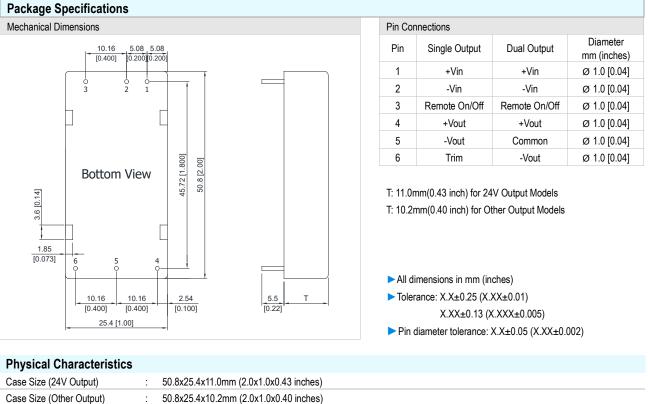
Environmental Specifications

Parameter	Conditions / Model		Ma	Unit	
Parameter	Conditions / Model	Min.	without Heatsink	with Heatsink	Unit
	MKWI40-XXS033		66	73	
	MKWI40-24S05, MKWI40-48S05		51	61	
Operating Ambient Temperature Range	MKWI40-48S12, MKWI40-48S15		51	01	
Nominal Vin, Load 100% Inom.	MKWI40-24S12, MKWI40-24S15	-40	45	57	°C
(for Power Derating see relative Derating Curves)	MKWI40-24S24, MKWI40-48S24		57	66	
	MKWI40-24D12, MKWI40-24D15		40	52	
	MKWI40-48D12, MKWI40-48D15		40		
	20LFM Convection without Heatsink 12.0				
	20LFM Convection with Heatsink	10.0			°C/W
	100LFM Convection without Heatsink	9.0			°C/W
	100LFM Convection with Heatsink	5.4	. 		°C/W
Thermal Impedance	200LFM Convection without Heatsink	8.0			°C/W
	200LFM Convection with Heatsink	200LFM Convection with Heatsink 4.5		-	°C/W
	400LFM Convection without Heatsink	6.0			°C/W
	400LFM Convection with Heatsink				°C/W
Case Temperature			+1	05	°C
Thermal Protection	Shutdown Temperature		110°C	typ.	
Storage Temperature Range		-50	+1	25	°C
Humidity (non condensing)			9	5	% rel. H
RFI	Six-Sided Sh	ielded, Metal	Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	60	°C


DC-DC CONVERTER 40W, Highest Power Density

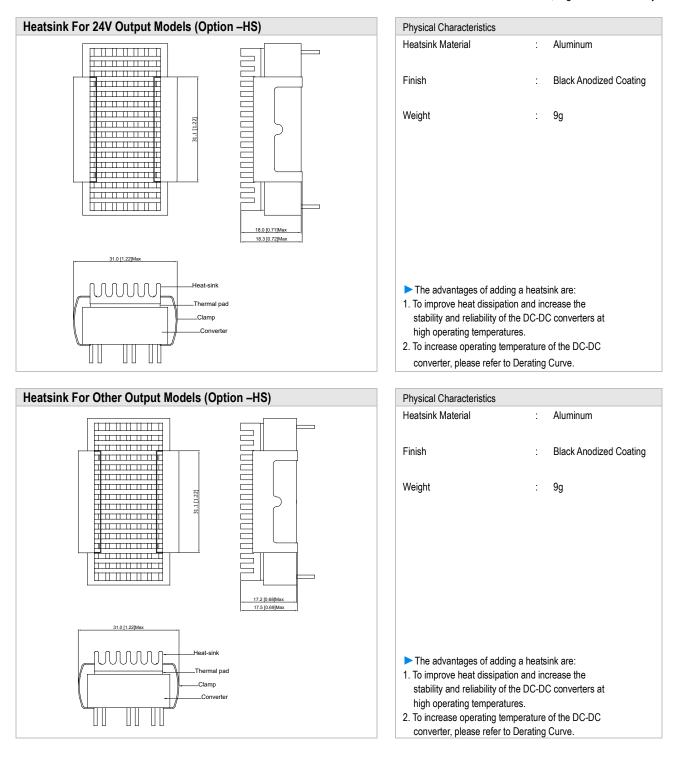
DC-DC CONVERTER 40W, Highest Power Density

Power Derating Curve



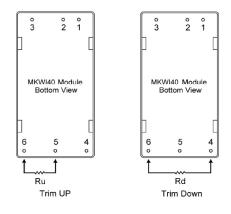
Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a 1μ F/50V M/C and a 10μ F50V T/C.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.
- 9 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.


DC-DC CONVERTER 40W, Highest Power Density

Case Size (Other Output)	:	50.8x25.4x10.2mm (2.0x1.0x0.40 inches)
Case Material	:	Metal With Non-Conductive Baseplate
Base Material	:	FR4 PCB (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Weight	:	30g

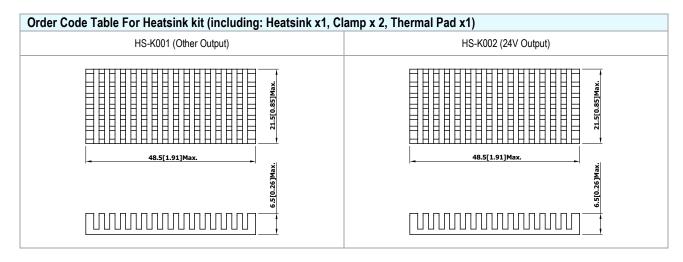
DC-DC CONVERTER 40W, Highest Power Density


www.minmaxpower.com

DC-DC CONVERTER 40W, Highest Power Density

External Output Trimming

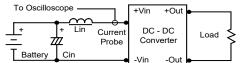
Output can be externally trimmed by using the method shown below


	MKWI40	XXS033	MKWI40	-XXS05	MKWI40	-XXS12	MKWI40	-XXS15	MKWI40	-XXS24
Trim Range	Trim down	Trim up								
(%)	(kΩ)	(kΩ)								
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	333.39	
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	148.80	243.70
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	87.26	
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	56.50	108.50
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	38.04	
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	25.73	63.43
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	16.94	
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	10.35	40.90
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	5.22	
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	1.12	27.38
12										18.37
14										11.93
16										7.10
18										3.34
20										0.34

www.minmaxpower.com

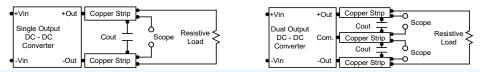
DC-DC CONVERTER 40W, Highest Power Density

er Code Table For Converter and Converter With Heatsink					
Standard	With heatsink	Without Remote On/Off			
MKWI40-24S033	MKWI40-24S033-HS	MKWI40-24S033-N			
MKWI40-24S05	MKWI40-24S05-HS	MKWI40-24S05-N			
MKWI40-24S12	MKWI40-24S12-HS	MKWI40-24S12-N			
MKWI40-24S15	MKWI40-24S15-HS	MKWI40-24S15-N			
MKWI40-24S24	MKWI40-24S24-HS	MKWI40-24S24-N			
MKWI40-24D12	MKWI40-24D12-HS	MKWI40-24D12-N			
MKWI40-24D15	MKWI40-24D15-HS	MKWI40-24D15-N			
MKWI40-48S033	MKWI40-48S033-HS	MKWI40-48S033-N			
MKWI40-48S05	MKWI40-48S05-HS	MKWI40-48S05-N			
MKWI40-48S12	MKWI40-48S12-HS	MKWI40-48S12-N			
MKWI40-48S15	MKWI40-48S15-HS	MKWI40-48S15-N			
MKWI40-48S24	MKWI40-48S24-HS	MKWI40-48S24-N			
MKWI40-48D12	MKWI40-48D12-HS	MKWI40-48D12-N			
MKWI40-48D15	MKWI40-48D15-HS	MKWI40-48D15-N			



DC-DC CONVERTER 40W, Highest Power Density

Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

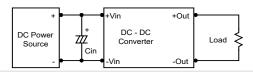
Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 4.7V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100 μ A. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 3) at logic high (2.5V to 100V) is 5 μ A.

Overcurrent Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

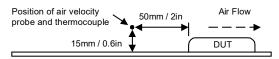
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

The MKWI40 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: <u>sales@minmax.com.tw</u> Minmax Technology Co., Ltd. 2024/06/13 REV:21 Page 10 of 10