

FEATURES

- ► Smallest Encapsulated 25W Converter
- ► Ultra-compact 1" X 1" Package
- ► Ultra-wide 4:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► Excellent Efficiency up to 90%
- ► I/O Isolation 1500 VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► No Min. Load Requirement
- ➤ Overload/Voltage and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim
- ► Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

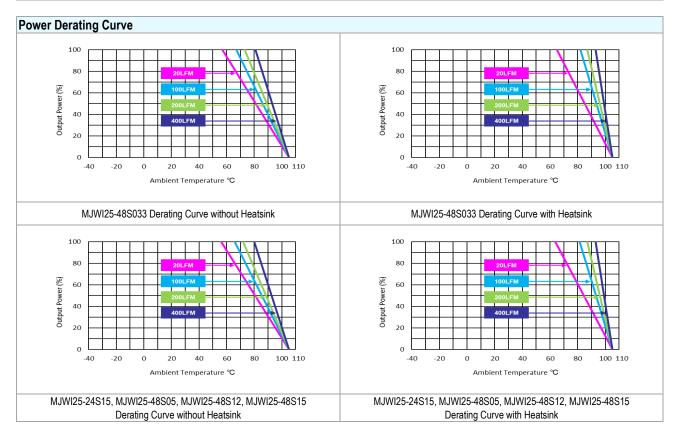
PRODUCT OVERVIEW

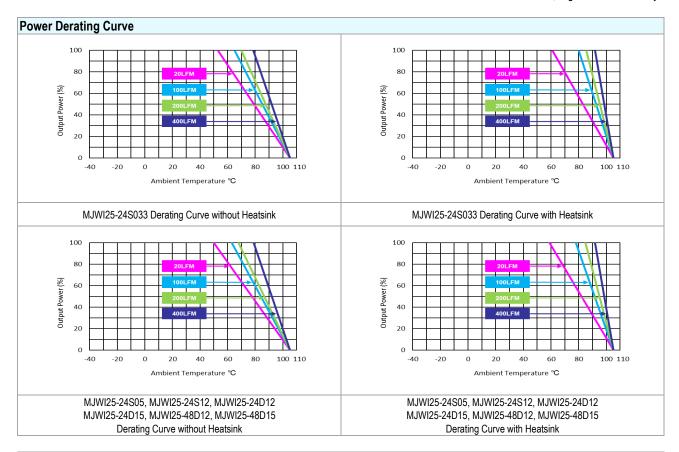
The MINMAX MJWI25 series is the latest range of a new generation of high performance DC-DC converter modules with very high power density. The product offers fully 25W in a shielded metal package with dimensions of just 1.0"x1.0"x0.4". All models provide ultra-wide 4:1 input range and tightly regulated output voltage. State-of-the-art circuit topology provides a very high efficiency up to 90% which allows an operating temperature range of -40°C to +80°C. These converters are qualified for demanding applications in battery operated equipment, instrumentation, data communication, industrial and many other space critical applications.

Model Selection Guide									
Model	Input	Output	Output	Inp	Input		Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Curr	ent	Ripple	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA (typ.)	VDC	μF	%
MJWI25-24S033		3.3	6000	950	85		3.9	10300	87
MJWI25-24S05		5	5000	1170	85		6.2	6800	89
MJWI25-24S12	24	12	2090	1175	85	50	15	1200	89
MJWI25-24S15	(9 ~ 36)	15	1670	1160	85	50	18	750	90
MJWI25-24D12		±12	±1040	1170	85		±15	680#	89
MJWI25-24D15		±15	±840	1180	85		±18	380#	89
MJWI25-48S033		3.3	6000	470	45		3.9	10300	88
MJWI25-48S05		5	5000	580	45		6.2	6800	90
MJWI25-48S12	48	12	2090	580	45	20	15	1200	90
MJWI25-48S15	(18 ~ 75)	15	1670	580	45	30	18	750	90
MJWI25-48D12		±12	±1040	585	45		±15	680#	89
MJWI25-48D15		±15	±840	590	45		±18	380#	89

For each output

Input Specifications							
Parameter		Conditions / Model		Тур.	Max.	Unit	
Input Surge Voltage (100ms max.)		24V Input Models	-0.7		50		
		48V Input Models -0.7			100	VDC	
Ota della Thanahald Vallana		24V Input Models			9	VDC	
Start-Up Threshold Volt	age	48V Input Models			18		
Start I In Time	Power Up	Nominal Vin and Constant Resistive Load			30	ms	
Start Up Time	Remote On/Off	Nominal viri and Constant Resistive Load			30	ms	
Input Filter		All Models Internal L		LC Type			


Remote On/Off Control						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Converter On	3.5V ~ 12V or Open Circuit					
Converter Off	0V ~ 1.2V or Short Circuit					
Control Input Current (on)	Vctrl = 5.0V			0.5	mA	
Control Input Current (off)	Vctrl = 0V			-0.5	mA	
Control Common	Referenced to Negative Input					
Standby Input Current	Nominal Vin		3		mA	


Output Specifications						
Parameter	Conditio	Conditions / Model			Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Output Voltage Balance	Dual Output,	Balanced Loads			±2.0	%
Line Regulation	Vin=Min. to N	Max. @Full Load			±0.2	%
Lead Develotion	L- 00/ L- 4000/	Single Output			±0.2	%
Load Regulation	lo=0% to 100%	Dual Output			±1.0	%
Cross Regulation (Dual)	Asymmetrical lo	Asymmetrical load 25% / 100% FL			±5.0	%
Minimum Load		No minimum Load Requirement				
Disale 0 Notes	0.001411 D. 1.144	3.3V & 5V Models			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	12V , 15V & Dual Models			150	mV _{P-P}
Transient Recovery Time	050/ 11	01 01		250		µsec
Transient Response Deviation	25% L0ad	Step Change		±3	±5	%
Temperature Coefficient					±0.02	%/°C
Trim Up / Down Range (See Page 6)	% of Nominal	l Output Voltage			±10	%
Over Load Protection	Hi	Hiccup		150		%
Short Circuit Protection	Co	Continuous, Automatic Recovery (Hiccup Mode 0.6Hz typ.)				

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	60 Seconds	1500			VDC	
	1 Second	1800			VDC	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V			2000	pF	
Switching Frequency			285		kHz	
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign		444,000 Hours			
0.00	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)					
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)					

EMC Specifications						
Parameter		Standards & Level Perf				
EMI	Conduction	EN 55032	With outernal components	Class A		
EMI ₍₆₎	Radiation	EIN 33032	With external components	Class A		
	EN 55035					
	ESD	EN 61000-4-2 Air \pm 8kV , Contact \pm 6kV		A		
EMC	Radiated immunity	EN 61000-4-3 10V/m		A		
EMS ₍₆₎	Fast transient	EN 61000-4-4 ±2kV		A		
	Surge	EN 61000-4-5 ±1kV		A		
	Conducted immunity	EN 61000-4	1-6 10Vrms	A		

Environmental Specifications		Min.	Ma			
Parameter	Conditions / Model		without Heatsink with Heatsink		Unit	
	MJWI25-48S033		57	65		
	MJWI25-24S15, MJWI25-48S05		56	64		
Operating Ambient Temperature Range	MJWI25-48S12, MJWI25-48S15		50	04		
Nominal Vin, Load 100% Inom.	MJWI25-24S033	-40	53	61	°C	
(for Power Derating see relative Derating Curves)	MJWI25-24S05, MJWI25-24S12					
	MJWI25-24D12, MJWI25-24D15		50	59		
	MJWI25-48D12, MJWI25-48D15					
	20LFM Convection without Heatsink	17.6			°C/W	
	20LFM Convection with Heatsink	14.8			°C/W	
	100LFM Convection without Heatsink	13.6			°C/W	
Thermal Impedance	100LFM Convection with Heatsink	8.5			°C/W	
Thermal impedance	200LFM Convection without Heatsink	vithout Heatsink 11.8			°C/W	
	200LFM Convection with Heatsink	6.5			°C/W	
	400LFM Convection without Heatsink	8.8			°C/W	
	400LFM Convection with Heatsink	4.3			°C/W	
Case Temperature			+10)5	°C	
Storage Temperature Range		-50	+12	25	°C	
Humidity (non condensing)			95	5	% rel. H	
RFI	Six-Sided shielded, Metal Case					
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C	

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a 1μF/25V MLCC and a 10μF/50V Tantalum Capacitor.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Specifications are subject to change without notice.
- 8 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Connections						
Pin	Single Output	Dual Output	Diameter mm (inches)			
1	+Vin	+Vin	Ø 1.0 [0.04]			
2	-Vin	-Vin	Ø 1.0 [0.04]			
3	+Vout	+Vout	Ø 1.0 [0.04]			
4	Trim	Common	Ø 1.0 [0.04]			
5	-Vout	-Vout	Ø 1.0 [0.04]			
6	Remote On/Off	Remote On/Off	Ø 1.0 [0.04]			

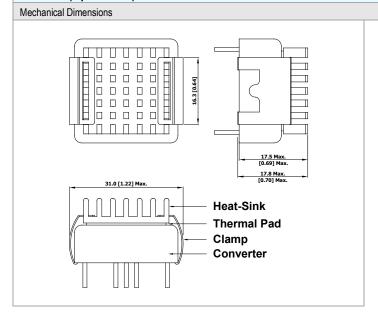
- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

Case Size : 25.4x25.4x10.2mm (1.0x1.0x0.4 inches)

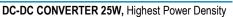

Case Material : Metal With Non-Conductive Baseplate

Base Material : FR4 PCB (flammability to UL 94V-0 rated)

Pin Material : Copper Alloy

Weight : Copper Alloy

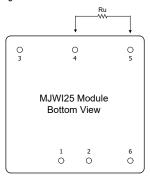
Heatsink (Option -HS)

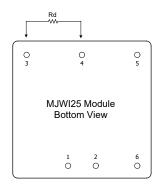


Heatsink Material: Aluminum

Finish: Anodic treatment (black)

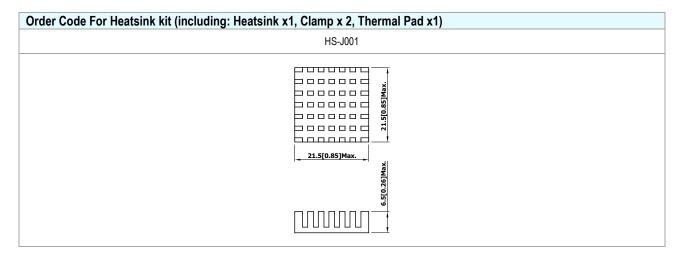
Weight: 2g


- ► The advantages of adding a heatsink are:
- To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures.
- 2.To increase Operating temperature of the DC-DC converter, please refer to Derating Curve.



External Output Trimming

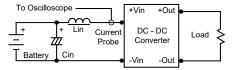
Output can be externally trimmed by using the method shown below


Trim Up

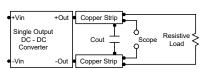
Trim Down

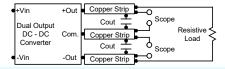
	MJWI25-XXS033		MJWI25-XXS033 MJWI25-XXS05		MJWI25	MJWI25-XXS12		MJWI25-XXS15	
Trim Range (%)	Trim down (kΩ)	Trim up $(k\Omega)$	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up (kΩ)	Trim down (kΩ)	Trim up (kΩ)	
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	

Order Code Table	Order Code Table					
Standard	With heatsink					
MJWI25-24S033	MJWI25-24S033-HS					
MJWI25-24S05	MJWI25-24S05-HS					
MJWI25-24S12	MJWI25-24S12-HS					
MJWI25-24S15	MJWI25-24S15-HS					
MJWI25-24D12	MJWI25-24D12-HS					
MJWI25-24D15	MJWI25-24D15-HS					
MJWI25-48S033	MJWI25-48S033-HS					
MJWI25-48S05	MJWI25-48S05-HS					
MJWI25-48S12	MJWI25-48S12-HS					
MJWI25-48S15	MJWI25-48S15-HS					
MJWI25-48D12	MJWI25-48D12-HS					
MJWI25-48D15	MJWI25-48D15-HS					



Test Setup


Input Reflected-Ripple Current Test Setup


Input reflected-ripple current is measured with a inductor Lin $(4.7 \mu H)$ and Cin $(220 \mu F, ESR < 1.0 \Omega)$ at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a 1µF ceramic capacitor and a 10µF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

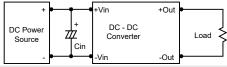
Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500uA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 6) at logic high (3.5V to 12V) is 10mA.

Overload Protection

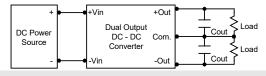
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

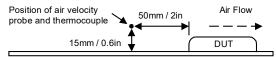
Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.


Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μF for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $4.7\mu F$ capacitors at the output.



Maximum Capacitive Load

The MJWl25 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw