

FEATURES

- ► Industrial Standard DIP-24 Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ➤ Ultra-high I/O Isolation 9000VDC with Reinforced Insulation, rate for 1000Vrms Working Voltage
- ▶ Operating Ambient Temp. Range -40°C to +96°C
- ► No Min. Load Requirement
- ► Under-Voltage, Overload/Voltage and Short Circuit Protection
- ► Conducted EMI EN 55032 Class A Approved
- ► UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MIE03-HI series is a range of high performance 3.5W DC-DC converter within encapsulated DIP-24 package which specifically design for high isolation applications where reinforced insulation and high working voltage are required. There are 25 models available for input voltage of 5, 12, 24, 48VDC with wide 2:1 input range and fixed output voltage. The I/O isolation is specified for 9000VDC with reinforced insulation, which rated for 1000Vrms working voltage. Further features include under-voltage, overload, over voltage, short circuit protection, no min. load requirement, EMI conduction EN 55032 Class A approved, low I/O capacitance 40pF max. and operating ambient temp. range by -40°C to 96°C by high efficiency up to 87%. MIE03-HI series conform to and UL/cUL/IEC/EN 62368-1(60950-1) safety approvals. The MIE03-HI series offer a superior solution for demanding applications in requesting a certified supplementary.

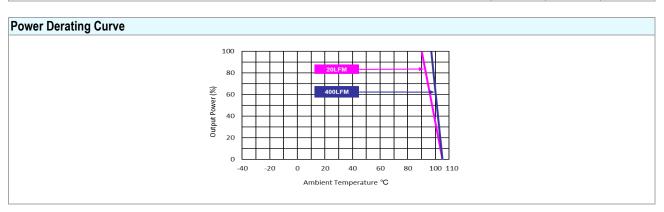
Model Selection	Guide							
Model	Input	Output	Output	Inj	out	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Voltage	Load	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	VDC	μF	%
MIE03-05S05HI		5	700	854		6.2	750	82
MIE03-05S058HI		5.8	600	849		6.2	560	82
MIE03-05\$12HI	_	12	290	839	20	15	130	83
MIE03-05\$15HI	5 (4.5 ~ 9)	15	235	839		18	100	84
MIE03-05S24HI	(4.5 ~ 9)	24	146	844		30	39	83
MIE03-05D12HI		±12	±145	829	25	±15	75#	84
MIE03-05D15HI		±15	±115	821	35	±18	56#	84
MIE03-12S05HI		5	700	356		6.2	750	82
MIE03-12S12HI		12	290	337		15	130	86
MIE03-12S15HI	12	15	235	338	8	18	100	87
MIE03-12S24HI	(9 ~ 18)	24	146	340		30	39	86
MIE03-12D12HI		±12	±145	333	42	±15	75#	87
MIE03-12D15HI		±15	±115	330	13	±18	56#	87
MIE03-24S05HI		5	700	178		6.2	750	82
MIE03-24S12HI		12	290	171		15	130	85
MIE03-24S15HI	24	15	235	169		18	100	87
MIE03-24S24HI	(18 ~ 36)	24	146	170	6	30	39	86
MIE03-24D12HI		±12	±145	167		±15	75#	87
MIE03-24D15HI		±15	±115	167		±18	56#	86
MIE03-48S05HI		5	700	89		6.2	750	82
MIE03-48S12HI		12	290	85		15	130	85
MIE03-48\$15HI	48	15	235	86		18	100	85
MIE03-48S24HI	(36 ~75)	24	146	88	4	30	39	83
MIE03-48D12HI		±12	±145	86		±15	75#	84
MIE03-48D15HI		±15	±115	86		±18	56#	84

For each output

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	5V Input Models	-0.7		15	
Innut Curre Valtage (4 and man)	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	5V Input Models			4.5	
Chart I in There had Nothern	12V Input Models			9	VDC
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	5V Input Models		4		
Lladas Valtasa Chutdaus	12V Input Models		8		
Under Voltage Shutdown	24V Input Models		16		
	48V Input Models		34		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load			30	ms
Input Filter	All Models		Internal	Pi Type	

Output Specifications							
Parameter	Co	Conditions		Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%Vnom.	
Output Voltage Balance	Dual Output	, Balanced Loads		±0.5	±2.0	%	
Line Regulation	Vin=Min. to	Max. @Full Load			±0.5	%	
Load Regulation	lo=0°	lo=0% to 100%			±0.5	%	
Load Cross Regulation (Dual Output)	Asymmetrical Loa	Asymmetrical Load 25%/100% Full Load			±5.0	%	
Minimum Load		No minimum Load Requirement					
Ripple & Noise	0-20 MHz Bandwidth	0-20 MHz Bandwidth Measured with a 1µF MLCC			70	mV _{P-P}	
Transient Recovery Time	050/ 1	d Otan Ohanna		300		μsec	
Transient Response Deviation	25% L080	d Step Change		±3	±5	%	
Temperature Coefficient				±0.01	±0.02	%/°C	
Over Load Protection				150		%	
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.5Hz typ.)						


Isolation, Safety Standards							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
	60 Seconds	5000			VAC		
I/O Isolation Voltage	Reinforced insulation, rated for 1000Vrms working voltage						
	Tested for 1 second	9000			VDC		
I/O Isolation Resistance	500 VDC	10			GΩ		
I/O Isolation Capacitance	100kHz, 1V			40	pF		
Cofet Americal	UL/cUL 60950-1 recognition(UL certificate), IEC/EN 60950-1(CB-report)						
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Switching Frequency			330		kHz	
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	5,815,448			Hours	

EMC Specifications					
Parameter		Standards & Level			
EMI	Conduction	EN 55032	Without external components	Class A	
EMI ₍₅₎	Radiation	EN 33032	With external components	Class A	
	EN 55035				
	ESD	Direct discharge	Indirect discharge HCP & VCP		
	ESD	EN 61000-4-2 Air ± 15kV	Contact ± 6kV	_ A	
FMC	Radiated immunity	EN 61000-4-3 10V/m		A	
EMS ₍₅₎	Fast transient	EN 61000-4-4 ±2kV		A	
	Surge	EN 6	A		
	Conducted immunity	EN 61000-4-6 10Vrms		A	
	PFMF	EN 61	A		

Environmental Specifications					
Parameter	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+96	°C		
Case Temperature		+105	°C		
Storage Temperature Range	-50	+125	°C		
Humidity (non condensing)		95	% rel. H		
Lead Temperature (1.5mm from case for 10Sec.)		260	°C		

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 Specifications are subject to change without notice.
- The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

Pin Connections					
Pin	Single Output	Dual Output	Diameter mm (inches)		
1	+Vin	+Vin	Ø 0.6 [0.02]		
11	No Pin	Common	Ø 0.6 [0.02]		
12	-Vout	No Pin	Ø 0.6 [0.02]		
13	+Vout	-Vout	Ø 0.6 [0.02]		
15	No Pin	+Vout	Ø 0.6 [0.02]		
23	-Vin	-Vin	Ø 0.6 [0.02]		
24	-Vin	-Vin	Ø 0.6 [0.02]		

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

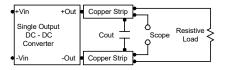
X.XX±0.25 (X.XXX±0.01)

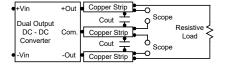
► Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

Physical Characteristics

 Case Size
 : 31.8x20.3x12.0mm (1.25x0.80x0.47 inches)

 Case Material
 : Plastic resin (flammability to UL 94V-0 rated)


 Pin Material
 : Copper Alloy


Weight : 15.5g

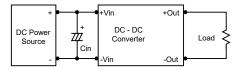
Test Setup

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add $4.7 \mu F$ capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

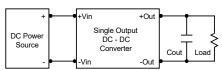
Technical Notes

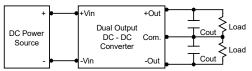
Overload Protection


To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

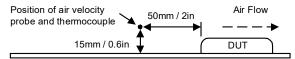
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to insure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 22μ F for the 5V input devices and a 10μ F for the 12V input devices and 10μ F for the 12V input devices and 12V i

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 1µF capacitors at the output.



Maximum Capacitive Load

The MIE03-HI series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

No. 77, Sec. 1, Zhonghua W. Rd., South Dist., Tainan City 702, Taiwan
Tel: 886-6-2923150 Fax: 886-6-2923149 E-mail: sales@minmax.com.tw

Minmax Technology Co., Ltd.
2024/06/17 REV:10 Page 5 of 5